DETECTION OF VIRULENCE FACTORS OF PSEUDOMONAS AERUGINOSA ISOLATED FROM CLINICAL SAMPLES

Raghad Z. Suleiman¹, Bashar saedqnoomi², Ibrahim Omar Saeed³

¹Dept. of Biology - College of Science - Tikrit University - Tikrit – Iraq.
²College of Veterinary Medicine Verified, University of Tikrit, Salah Al-Din, Iraq.
³Department of Biology, College of Science, University of Tikrit, Salah Al-Din, Iraq.

¹Raghadzeiyad99@yahoo.com, ³Dr.ibrahim1977@tu.edu.iq

ABSTRACT

The aim of this research is to study the effectiveness of Pseudomonas aeruginosa bacteria isolated from clinical samples to produce Protease, Lipase, Amylase, Urease, DNase and Hemolysine. One hundred samples were collected from patients hospitalized during July 2020 till the end of January 2021 to isolate and identify P. aeruginosa from clinical sources including infections of wounds and burns. Twenty three isolates were found to be belonging to P. aeruginosa, which mean an isolate rate of (23%) of the total samples. The diagnosis was carried out based on phenotypic characteristics and biochemical tests. P. aeruginosawas found in (10) out of (38) wound infections samples, (13) out of (62) burn infections samples. This means that isolates from the wound infections constituted the highest percentage of (26%) of the total samples, while the lowest percentage of (20.9%) was obtained from the burn infections samples. The results showed that (24.7%) of total isolates were Hemolysin producer on blood agar, It was also found that (60.8%) of total isolates were Amylase producer on Starch agar, (69.5%) of total isolates were Protease and Lipase producer on Skim milk agar and on Rhm agar, (21.7%) of total isolates were Urease producer on Urea agar and (30.4%) were DNase producer on a DNase agar medium.

Keywords: Pseudomonas aeruginosa, Clinical Samples, virulence factors.

I. INTRODUCTION

P. aeruginosa is an important opportunistic pathogen causing life-threatening acute infections in individuals with compromised immune systems. It is also the most common cause of chronic mental infections and skin infections, and the main cause of morbidity and death in patients with hereditary cirrhosis (Kostylev et al., 2019).

Pseudomonas Gram-negative bacteria appear as short chains or single cells, or may be straight or curved bacilli, moving by a single polar flagellum. P. aeruginosa are endemic in different environments such as soil, water, on surfaces, etc. (Chevallereau, 2017).

Pseudomonas transmitted mainly by dust-borne, tap water and bed sheets. Moreover, patients with chronic skin lesion are considered as a source for others lying in the same hall, as well as the operating theater bed, surgical instruments, floors, walls, cupboards, lighting, anesthesia device, ventilation and sterilizers. Doctors, nurses, other staff and visitors also take part in the process of transmitting these bacteria by direct contact or by using some multi-use uniforms (Nikbin et al., 2012; Inglesia et. al., 2009).

Diseases caused by P. aeruginosa bacteria depend on their possession of multiple virulence factors that enable them to break down tissues and invade the bloodstream. Among the most important of these factors are Protease, DNase and Hemolysine (Wilhel et. al., 1999; Ernst, 1999).

Hospital infection is one of the main problems facing health care staff, especially those who deal with serious surgical cases as a result of bacterial contamination in the surgical operating theaters. This in turn leads to the spread of hospital infections among patients too(Iiyama et. al., 2017). The spread of these infections has many dangerous effects, including an increase in the morbidity and mortality rate, the prolonged stay of the patient in...
the hospital and the increased need to use antibiotics that have an effective effect on the bacteria (Finnan et al., 2004).

II. MATERIALS AND METHODS

1. Samples Collection
The samples of this study were collected from clinical sources using cotton swab under supervision of a specialist physician. Then each sample was activated on a nutrient agar, incubated, taken with a tube and be carefully taken out of the tube so as not to touch the tube wall, and finally transplanted on a special plate for the growth of P. aeruginosa for the purpose of purification.

It is isolated from patients hospitalized, (100) clinical samples from two places of the patients hospitalized. The sample collection period lasted from the end of July (2020) to the end of January (2021).

2. Preparation of Culture Media
Readymade culture media were prepared according to the manufacturer's instructions. Three types of media were prepared as follows:

2.1 Blood Agar
This medium was prepared according to (Rutala W.A., 1996).

2.2 Cetrimide Agar
This medium was prepared according to (Holt et al., 1984).

2.3 Skim Milk Agar
This medium was prepared according to (Kalai, 2009).

3. Isolation of P. aeruginosa
After the samples were collected by swabs, they were cultured by loops using the spreader method on blood agar and MacConkey agar. The plates were incubated at 37°C for 24 hours. After the incubation period, the results are read in which P. aeruginosawas found not to ferment lactose sugar. Then, the developing bacterial colonies were transferred to Pseudomonas agar medium and the dishes were incubated at 37°C for 24 hours. The isolates carrying the characteristics of P. aeruginosawere selected and re-cultivated on a Cetrimide agar, which is regarded as a special medium for P. aeruginosa, and then incubated at 37°C for 24 hours. These colonies were also purified more than once to obtain good, pure isolates for the purpose of diagnosis confirmatory of P. aeruginosa.

4. Diagnosis of Bacterial Isolates
Bacterial isolates were diagnosed based on cultural and microscopic characteristics as well as biochemical tests as follows:

4.1 Cultural Characteristics
In order to study the agronomic characteristics of the bacterial isolates, the bacterial isolates ability to grow was tested at first on a group of culture media, including Pseudomonas agar, special Pseudomonas agar, Cetrimide agar, and selective P. aeruginosa according to (Brooks et. al., 2007). They were also cultured on MacConkey agar and Blood base agar in order to diagnose cultural characteristics in terms of colony color and shape.

4.2 Microscopic Examination
A microscopic examination of the developing bacterial cells was carried out and stained with a gram stain solutions according to (Brooks et. al., 2007).

4.3 Biochemical Tests
In order to diagnose the isolates at the species level, the purified colonies were subjected to two types of biochemical tests, Oxidase test and Catalase test According to (Rahman, 2006).
5. Determination of Virulence Factors

5.1 Hemolysin Production
According to (Wisplinghoff, 2017), the ability of the isolates to produce bacterial hemolysin and ability of \textit{P. aeruginosa} bacteria to analyze blood.

5.2 Protease Production
According to (Cruickshank et al., 1975), the ability of the isolates to produce bacterial Protease and ability of \textit{P. aeruginosa} bacteria to analyze protein.

5.3 DNase Production
According to (Heidi et al., 2010), the ability of the isolates to produce bacterial DNase and ability of \textit{P. aeruginosa} bacteria to hydrolyze DNA.

5.4 Lipase Production
According to (Ghafil & Hassan, 2014), the ability of the isolates to produce bacterial Lipase and ability of \textit{P. aeruginosa} bacteria degradation of lipids.

5.5 Amylase Production
According to (Sivaramakrishnan, 2007), the ability of the isolates to produce bacterial Amylase and ability of \textit{P. aeruginosa} bacteria hydrolysis starch.

5.6 Urease Production
According to (Qassem, 2006), the ability of the isolates to produce bacterial Urease and ability of \textit{P. aeruginosa} bacteria to hydrolysis urea (ammonia).

III. RESULTS AND DISCUSSION

1. Isolation and Identification
The results of isolation and diagnosis of patients hospitalized samples showed the presence of bacterial growth belonging to the species \textit{P. aeruginosa} in (23) out of (100) samples of clinical sources including (10) out of (38) isolates from the Wound infections, and (13) out of (62) isolates from the Burns infections, as listed in Table (1).

<table>
<thead>
<tr>
<th>Type of samples</th>
<th>Total clinical samples</th>
<th>\textit{P. aeruginosa} isolates</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wound infections</td>
<td>38</td>
<td>10</td>
<td>26%</td>
</tr>
<tr>
<td>Burns infections</td>
<td>62</td>
<td>13</td>
<td>20.9%</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>23</td>
<td>23%</td>
</tr>
</tbody>
</table>

2. Agricultural Characteristics
2.1 Growth on Cetrimide Agar It appears in the form of green colonies as shown in Fig. (1).
2.2 Growth on Nutrient Agar

It produces (80%) pyocyanin when grown on Nutrient agar medium. Large colonies with little convexity and flat edges were observed as shown in Fig. (2).

Figure 2: *P. aeruginosa* colonies grown on Nutrient medium

2.3 Growth on Blood Agar

Transparent halo appeared around the colonies that were grown on a stimulating enrichment medium as shown in Fig. (3).

Figure 3: *P. aeruginosa* colonies grown on Blood medium

2.4 Growth on Skim Milk agar
The ability of the isolates to produce protease enzyme was investigated using Skim Milk agar medium as shown in Fig. (4).

![Figure 4: P. aeruginosa colonies grown on Skim Milk agar](image)

Figure 4: P. aeruginosa colonies grown on Skim Milk agar

2.5 Production of the deoxyribonucleic acid (DNase) enzyme

The results of this research showed the ability of the isolates to produce this enzyme as shown in Fig. (5). Transparent halo appeared around the bacterial colonies cultivated on a DNase agar medium after adding HCL.

![Figure 5: Production of the deoxyribonucleic acid (DNase) enzyme](image)

Figure 5: Production of the deoxyribonucleic acid (DNase) enzyme

2.6 Production of the Lipase enzyme

The ability of the isolates to produce Lipase enzyme was investigated using Rhan agar medium as shown in Fig. (6).
2.7 Production of the Amylase enzyme

The ability of the isolates to produce Amylase enzyme was investigated using Starch agar medium as shown in Fig. (7).

2.8 Production of the Urease enzyme

The ability of the isolates to produce Urease enzyme was investigated using Urea agar base as shown in Fig. (8).
Virulence factors

The results showed that (24.7%) of total isolates were Hemolysin producer on blood agar. It was also found that (69.5%) of total isolates were Protease producer on Skim milk agar, (30.4%) were DNase producer, (69.5%) were Lipase producer, (60.8%) were Amylase producer, and (21.7%) were Urease producer, Table (2).

Table (2) shows a summary of the Virulence factors found in this research in the *P. aeruginosa* isolates out of 23 Clinical samples.

<table>
<thead>
<tr>
<th>Virulence factors</th>
<th>No.</th>
<th>percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemolysin</td>
<td>8</td>
<td>24.7%</td>
</tr>
<tr>
<td>Protease</td>
<td>16</td>
<td>69.5%</td>
</tr>
<tr>
<td>DNase</td>
<td>7</td>
<td>30.4%</td>
</tr>
<tr>
<td>Lipase</td>
<td>16</td>
<td>69.5%</td>
</tr>
<tr>
<td>Amylase</td>
<td>14</td>
<td>60.8%</td>
</tr>
<tr>
<td>Urease</td>
<td>5</td>
<td>21.7%</td>
</tr>
</tbody>
</table>

REFERENCES