THE EFFECT OF SPECIAL EXERCISES WITH BY MEANS OF ASSISTANCE IN DEVELOPING THE MOST IMPORTANT MOTOR ABILITIES AND THE ACCURACY OF SOME VOLLEYBALL SKILLS FOR JUNIORS

Mohammed saadi hameed¹, Dr. Wissam Riad Hussein², Dr. Haider mahmoud abood³

¹Master. Student. Faculty of Physical Education and Sports Sciences / University of Babylon, Iraq.
²Faculty of Physical Education and Sports Sciences / University of Babylon, Iraq.
³Faculty of Physical Education and Sports Sciences / University of Babylon, Iraq.

1msdy3439@gmail.com, 2Phy.wisam.r@uobabylon.edu.iq, 3Haider.m7011@gmail.com

ABSTRACT

The purpose of this paper is to preparing special exercises using the means of assistance and identifying the impact of the special exercises using the means of assistance in developing the most important motor abilities and the accuracy of some skills in volleyball for juniors. The research sample was the specialized school of Al-Qasim Sports Club, which numbered (30) players. The researcher used the experimental method and divided the sample into two groups, experimental and control, and applied the educational method to the experimental research sample. And the researcher used the Statistical Package for the Social Sciences (SPSS) to extract results. The researcher concluded... that special exercises using assistive devices greatly helped in the development of motor abilities, some basic skills (Dig, Bump Set, Attack). The use of aids that serve the skill requirements has a positive effect on the development of motor abilities and performance of the skills under study.

I. INTRODUCTION:

The world is witnessing development in various aspects of life as a result of the growth of scientific knowledge and reliance on various sciences and benefiting from the results of studies and research in these areas, especially in the sports field, which is currently witnessing "development and progress in the digital achievements achieved, whether at the level of international or Olympic championships, even Arab championships and various events. And the games, after the developed countries of the world have put great potentials to raise the level of sports through advanced scientific methods through which the technical and physical capabilities of all athletes can be invested.

Volleyball is one of the games that is characterized by speed, strength and excitement, and the competition continues between the two teams to achieve victory. Assistance (video photography and presentation on the computer and pictures of the kinetic sequence of basic skills), which gives information about the nature of performance of the players with regard to this performance and the degree of integration of their work, both physically and technically, to reach the ideal performance.

Hence, those in charge of the educational process tended to find a variety of aids aimed at developing the educational process in proportion to the ages of the players and their kinetic abilities, and it was developed in a scientific, planned and appropriate manner for the skill to be taught, and most of the specialists were interested in manufacturing many aids that facilitate the learning process and are used in learning Skills to reduce time and effort on the playgrounds and the coach, and play a key role in building educational units, as the learner or player often interacts with them in a positive way, as it ultimately gives the result of the correct application of the skills to be learned in addition to giving the performance an aspect of suspense, fun, excitement and better learning.

Hence the importance of the research by giving special exercises using aids and knowing their impact on the development of some motor abilities and basic skills of volleyball players, so that we can benefit from the results of the research and determine the validity of these exercises, and this, in turn, leads to the development of the
training process and bringing the player to the highest level Physically and skillfully, thus enabling us to achieve the required athletic levels.

Research problem:
The development of the level of performance requires building scientific curricula that take into account the development of motor abilities and basic skills related to the game of volleyball. The researcher being one of the volleyball players noticed that there is a weakness in some special motor abilities and their impact on the level of performance of basic skills, which affects the effectiveness of the players’ performance, as most of the youth teams suffer from a clear decline in the level of performance due to the lack of focus on special exercises and thus leads to Lack of focus and low level of overall performance (physical, physiological, technical, psychological and cognitive). Therefore, the researcher decided to study this problem and develop appropriate solutions to it by preparing special exercises using auxiliary means (video photography and presentation on the computer and pictures of the kinetic sequence of basic skills) aimed at developing the motor abilities of young volleyball players, which is thus used to develop the accuracy of performance for players in the ball The plane is a youth category, hoping to reach results that serve the development of this game of artistic nature known for its aesthetic and famous in various countries of the world.

Research objective:
- Preparing special exercises using the means of assistance in developing the most important motor abilities and the accuracy of some skills in volleyball for juniors.
- Knowing the impact of special exercises using means of assistance in developing the most important motor abilities and the accuracy of some skills in volleyball for juniors.

Research hypotheses:
- There is a positive effect of special exercises using means of assistance in developing the most important motor abilities and the accuracy of some skills in volleyball for juniors.

Research fields:
- Human field: Specialized School of Al-Qasim Sports Club, junior category.
- Time field: (2/2/2021) to (5/4/2021)
- Spatial field: The sports hall for Al-Qasim Volleyball Club training.

Research methodology and field procedures:
Research Methodology:
The researcher used the experimental method for its suitability to the nature of the research problem

<table>
<thead>
<tr>
<th>Groups</th>
<th>Pre-test</th>
<th>experimental treatment</th>
<th>Post-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>experimental</td>
<td>Motor abilities and accuracy of some basic</td>
<td>Special exercises using</td>
<td>Motor abilities and accuracy of some basic</td>
</tr>
<tr>
<td>group</td>
<td>skills</td>
<td>assistive devices</td>
<td>skills</td>
</tr>
<tr>
<td>control group</td>
<td>Motor abilities and accuracy of some basic</td>
<td>coach-style</td>
<td>Motor abilities and accuracy of some basic</td>
</tr>
<tr>
<td></td>
<td>skills</td>
<td></td>
<td>skills</td>
</tr>
</tbody>
</table>

Community and sample research:
The research community was determined by young players aged (14-16) years in volleyball in the Specialized School of Al-Qasim Sports Club, which numbered (30) players. Where the research sample was chosen in a simple random way with a number of (24) players, and then divided into two groups: experimental and control, where the sample percentage reached (80%) of the community size and by (12) players for each group.

Table (2) Shows the sample size distribution.
Means, tools and devices used in the research:

Data collection methods:
- Arab and foreign sources.
- A questionnaire form to survey the opinions of experts and specialists.
- Information collection form.
- Note.
- Personal interviews.

Tools and devices used in the research:
- A Dell laptop.
- Electronic stopwatches type (Casio) number (2).
- A Sony video camera.
- Metric tape measure (10 m long)
- Flying balls (15)
- Visual display device (Data show)
- Colored flex with various sizes to display basic skills
- A medical scale for measuring Chinese weight
- A measuring tape with a length of 3 m to measure the length
- A legal volleyball court

Determining search variables

Determining the physical and skill variables:
The researcher designed a questionnaire for the purpose of determining the most important motor abilities and basic skills of volleyball players. Through this form, the researcher surveyed the opinions of a group of experts and specialists in the field of volleyball and motor learning to determine the most important motor and skill abilities that can be nominated and that serve Research to achieve its objectives and fit the research sample.

The researcher chose the motor and skill abilities of the volleyball players, which achieved a relatively high percentage of importance and agreement, while the researcher neglected the abilities and skills that did not achieve an agreement percentage of 75% or more, as “the researcher has the right to choose the percentage he deems appropriate when choosing the indicators”(2) as shown in Table (3).

Table (3) shows the relative importance of the agreement of experts and specialists about the motor and skill abilities and the acceptable ratios.

<table>
<thead>
<tr>
<th>No.</th>
<th>Motor abilities</th>
<th>Agreement ratio</th>
<th>Acceptable ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Balance</td>
<td>%100</td>
<td>/</td>
</tr>
<tr>
<td>2</td>
<td>Compatibility</td>
<td>%94</td>
<td>/</td>
</tr>
<tr>
<td>3</td>
<td>Flexibility</td>
<td>%94</td>
<td>/</td>
</tr>
</tbody>
</table>
Identify the tests concerned with measuring motor abilities:

According to the results of the survey form through which the motor and skill abilities under study were determined, and after the researcher reviewed many sources and references concerned with physical and skill tests, a number of tests were selected to measure the variables concerned with research and put them in a special form to explore the opinions of experts about the nomination of the most important of those Tests, which are supposed to be more valid in measuring the variables under discussion when choosing the appropriate tests, the researcher relied on the relative importance of 75% as well.

Description of the tests used in the research:

Balance motor Measurement Test (3):

Tools: balance beam, video camera, whistle.

Test administration: Photographer, divorced.

Performance description: - The mobile balance test for the members of the research sample and for both groups by using a legal balance beam of length (6 m) but of height (50 cm), as the tested athlete climbs on the beam and then walks on it back and forth "for one time, and the time of total performance is measured and recorded. When the athlete falls off the crossbar, he returns to the point from which he fell himself and completes the distance to the end. Three attempts are given to each tester and the best attempt is chosen.

Recording: The performance time was measured by videotaping the research sample during their performance on the crossbar from the moment of starting to the moment of reaching the finish line.

Compatibility test (Throwing balls to the wall test)

Objective of the test: To measure the compatibility of the eyes, arms and ball.

Tools: wall, 10 tennis balls, throwing line 5 meters from the wall.

Method of performance: The player stands behind the throwing line and faces the wall, throws and receives balls according to the following method: (3)

- Throwing five balls with the left hand and receiving them with the same hand.
- Throwing five balls with the right hand and receiving them with the same hand.
- Throwing five balls with the left hand and receiving them with the right hand.
- Throwing five balls with the right hand and receiving them with the left hand.

Conditions:

- The ball must be thrown to the wall and received immediately before it hits the ground.
- No additional attempts are allowed.
- The specific conditions must be followed in terms of the throwing hand and the receiving hand.

Scoring: A score is calculated for each correct attempt out of the twenty scheduled throws, i.e. the total score out of twenty.

Flexibility (3):

Objective of the test: To measure flexibility (flexion, extension and rotation of the spine).
Tools: stopwatch. Wall.

Performance specifications: Draw a mark (X) on two points:

- On the floor between the feet of the laboratory.
- On the wall behind the back of the laboratory (in the middle).

Upon hearing the start signal, the tester bends the torso forward downward to touch the ground with the tips of the fingers at the (X) mark between the feet, then extends the torso high while rotating to the left to touch the (X) mark located below the back with the tips of the fingers, repeating the same action to the right. Also, Figure (10) illustrates this.

Recording: The sample records the number of touches made on the two marks within (30) seconds.

![Image of dynamic flexibility](image.png)

Fig. (1) shows the dynamic flexibility

Performance accuracy tests for volleyball Dig skill

Objective of the test: to measure the accuracy of the skill of receiving volleyball.

Tools: Dig accuracy-test device, (5) legal volleyballs, pre-prepared accuracy evaluation form

Device specifications: A device is designed to measure the accuracy of the receiver and be at a height of 3 meters from the ground, and the width of the base of the device is (50) cm, consisting of three columns, in the form of a square (60 x 60).

Performance specifications: The tested player performs (5) attempts from position No. (1) or (5). The tester must be committed to receiving from the area designated for him and directing the ball to the device that is in position No. (3).

- The ball that enters the device is given (4 marks)
- The ball that touches the ring and enters is given (3 marks)
- The ball that touches the ring and does not enter is given (2 marks)
- The ball close to the ring is given (one score).

The test’s maximum score (20) marks
Fig. (2) shows the accuracy of the volleyball Dig

Performance accuracy test for the skill of Bump set in volleyball

Objective of the test: to measure the accuracy of the skill of Bump set in volleyball.

Tools: Accuracy test device, number (5) legal volleyballs, pre-prepared accuracy evaluation form.

Device specifications: A device is designed to measure the accuracy of the setup and be at a height of (3) meters from the ground, and the width of the base of the device is (50) cm, consisting of three columns (25) cm, with a ring of radius.

Performance specifications: The tested player stands facing the device, which is 4-3 meters away, raises the ball up, then passes it to the device, trying to pass it inside the ring).

Recording:
- The ball that enters the device is given (4 degrees) - the ball that touches the ring and enters is given (3 degrees) - the ball that touches the ring and did not enter is given (2 degrees) - the ball close to the ring is given (1 degree)

The test's maximum score (20)

Measuring the accuracy of the skill of attack in volleyball

Objective of the test: to measure the accuracy of the skill of attack in volleyball

Tools: a legal volleyball court, (5) legal volleyballs, and a colored tape to divide the opposite court.

Performance specifications: The tested player performs the skill of crushing beating from the center (4), as the coach prepares the balls for him from the center (3), and the tested player performs the skill. Performance conditions: Each test player has (5) consecutive attempts on the area (A) Each player has tested (5) consecutive attempts on the area (B) - the preparation must be good in each attempt and the tester is given the score of the area in which it is located the ball

Scoring: (4) points for each smash in which the ball falls on the area (A) or (B) - (3) points for each smash in which the ball falls on the planned area. (2) Points for each attack in which the ball falls on the (a) and (b) For every attack that falls outside the court. The total score for each area is (20) degrees, where the maximum score for the two areas (A) and (B)
Fig. (3) shows the accuracy of the attack

Exploratory experience:

The exploratory experiment is one of the most important necessary procedures that the researcher undertakes before performing his final experiment in order to test the research methods and tools and to indicate the requirements for accurate and correct work that is free of difficulties\(^4\). The researcher conducted an exploratory experiment on (Sunday) corresponding to 4/1/2021 on a sample of (6) players who were not the sample of the research and the objective of the experiment was as follows:

- Ensure the efficiency of devices and tools
- Recognize the time each test takes as well as the time of the total tests
- Efficient auxiliary work team
- The level of difficulty of the tests for the research sample
- Knowing the difficulties that the researcher faces in order to avoid them in the future
- Finding the scientific coefficients of the tests (reliability and objectivity)

Scientific basis for the tests:

Honesty of the test:

Which is often done “by logical judgment on the existence of the characteristic, characteristic or ability in question to investigate whether the proposed method of measurement actually measures it or not”\(^5\).

Test stability:

In order to extract the reliability coefficient for tests, the principle of the constant test must be applied, "which gives close results or the same results if it is applied more than once in similar conditions"\(^6\). This indicates that the tests have a high degree of stability as shown in Table (8).

Objectivity

Objectivity is defined as “the extent to which the arbitrator or examiner is free from subjective factors”\(^7\). That is, the test is not subject to self-assessment. As shown in Table (4)

<table>
<thead>
<tr>
<th>No.</th>
<th>Tests</th>
<th>stability</th>
<th>T value</th>
<th>objectivity</th>
<th>Type sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Balance</td>
<td>0.90</td>
<td>8.04</td>
<td>0.88</td>
<td>7.18</td>
</tr>
<tr>
<td>2</td>
<td>Compatibility</td>
<td>0.89</td>
<td>7.19</td>
<td>0.87</td>
<td>6.56</td>
</tr>
<tr>
<td>3</td>
<td>Flexibility</td>
<td>0.85</td>
<td>6.20</td>
<td>0.82</td>
<td>5.56</td>
</tr>
<tr>
<td>4</td>
<td>Dig</td>
<td>0.88</td>
<td>7.18</td>
<td>0.86</td>
<td>6.50</td>
</tr>
<tr>
<td>5</td>
<td>Bump set</td>
<td>0.91</td>
<td>8.14</td>
<td>0.89</td>
<td>7.20</td>
</tr>
<tr>
<td>6</td>
<td>Attack</td>
<td>0.87</td>
<td>7.20</td>
<td>0.85</td>
<td>6.49</td>
</tr>
</tbody>
</table>

Pre-tests:

www.turkjphysiotherrehabil.org 16335
The researchers conducted pre-tests for the research sample in the research variables (motor abilities and basic skills) on (Sunday) 4/1/2021 before starting the main experiment with all variables controlled.

Sample equivalency procedures:
In order to equalize the control and experimental groups among themselves, the researcher worked by relying on the pre-test for all physical and functional research variables, as well as height, weight, and training age, and by applying the approved statistical method. As shown in Table (5).

Table (5) shows the equivalence of the control and experimental groups in the studied variables.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Measuring unit</th>
<th>Control group</th>
<th>Experimental group</th>
<th>T calculated</th>
<th>Level sig</th>
<th>Sig type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>standard deviation</td>
<td>Mean</td>
<td>standard deviation</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>Cm</td>
<td>167.75</td>
<td>1.42</td>
<td>169.00</td>
<td>3.25</td>
<td>1.22</td>
</tr>
<tr>
<td>Mass</td>
<td>Kg</td>
<td>62.58</td>
<td>1.88</td>
<td>63.08</td>
<td>1.93</td>
<td>0.64</td>
</tr>
<tr>
<td>Age</td>
<td>Year</td>
<td>19.00</td>
<td>0.85</td>
<td>18.92</td>
<td>0.79</td>
<td>0.25</td>
</tr>
<tr>
<td>Balance</td>
<td>Min/sec</td>
<td>6.50</td>
<td>0.67</td>
<td>6.75</td>
<td>0.75</td>
<td>0.86</td>
</tr>
<tr>
<td>Compatibility</td>
<td>Min</td>
<td>9.92</td>
<td>0.79</td>
<td>9.83</td>
<td>0.83</td>
<td>0.25</td>
</tr>
<tr>
<td>Flexibility</td>
<td>Count</td>
<td>33.08</td>
<td>1.16</td>
<td>33.25</td>
<td>0.97</td>
<td>0.38</td>
</tr>
<tr>
<td>Dig</td>
<td>Min</td>
<td>10.17</td>
<td>0.94</td>
<td>10.08</td>
<td>0.79</td>
<td>0.24</td>
</tr>
<tr>
<td>Bump set</td>
<td>Min</td>
<td>10.42</td>
<td>0.79</td>
<td>10.25</td>
<td>0.75</td>
<td>0.53</td>
</tr>
<tr>
<td>Attack</td>
<td>Min</td>
<td>20.50</td>
<td>1.17</td>
<td>20.42</td>
<td>0.79</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Training program (special exercises using assistive devices):
The researcher reviewed the training curriculum of the coach of the specialized school of Al-Qasim Volleyball Sports Club and will apply the special exercises prepared by the researcher using the aids on the vocabulary of this program after reviewing the relevant sources and references. The researcher also conducted personal interviews with many experts in the field of Training, kinesthetic learning, teaching methods and volleyball to set the appropriate special exercises and special duties for the players and how to apply aids during the main experience in line with the abilities of the players in the specialized school-aged (14-16) years old in volleyball. Where the educational program began on (Monday) corresponding to 2/2/2021 and was completed on (Wednesday) corresponding to 5/4/2021. The training units consisted of (48) units divided equally into the two groups, meaning (24) training units for each group and by (3) units per week for each group, and the unit time was (120) minutes for a period of (8) weeks.

Table (6) shows the sections of one training unit, its times, and the percentages of the experimental research sample.

<table>
<thead>
<tr>
<th>No.</th>
<th>Sections training unit</th>
<th>time through Training unit / min</th>
<th>time through Search duration(min)</th>
<th>percentage for the training unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Preparatory section</td>
<td>20</td>
<td>480</td>
<td>% 16,67</td>
</tr>
<tr>
<td></td>
<td>the introduction</td>
<td>5</td>
<td>120</td>
<td>%4,17</td>
</tr>
<tr>
<td></td>
<td>warm-up</td>
<td>15</td>
<td>360</td>
<td>%12,50</td>
</tr>
<tr>
<td></td>
<td>general</td>
<td>5</td>
<td>120</td>
<td>%4,17</td>
</tr>
<tr>
<td></td>
<td>private</td>
<td>10</td>
<td>240</td>
<td>%8,34</td>
</tr>
<tr>
<td>2</td>
<td>main section</td>
<td>95</td>
<td>2280</td>
<td>%79,17</td>
</tr>
<tr>
<td></td>
<td>educational aspect</td>
<td>15</td>
<td>360</td>
<td>%12,50</td>
</tr>
<tr>
<td></td>
<td>Application side</td>
<td>80</td>
<td>1920</td>
<td>%66,66</td>
</tr>
</tbody>
</table>
The researcher also adopted the aids during the educational units, which are as follows.

* **View a model through the main display (Data Show).**

The skills under study are presented at the beginning of the training unit by the main display device (Data Show), which helps to see the correct performance of those skills and benefit from it during their actual application. Its duration is (5) minutes, related to the introductory section.

* Filming the player's performance by (video camera) during the practical part of the training unit and displaying this performance at the end of the training unit to note the mistakes made by the player during the performance of the required duty and the player's attempt to overcome those mistakes in the next training unit. Its duration is (5) minutes in the concluding section.

* Drawing Illustration of the skills in question.

The researcher has prepared a colored flex that shows the dynamic sequence of the basic skills to be used in the player's knowledge of his mistakes during the motor performance of the skills, which helps the player to overcome those mistakes at the same time.

- View a live model: The coach will perform the basic skills and explain the importance of accuracy and tactical behavior in the game of volleyball in front of the players to get to know this importance and its role in refining the talent of the players.

- The devices used to develop and measure the accuracy of the basic skills under study (Dig , Bump set, Attack).

Post-tests:

The researcher conducted the post-tests on (Thursday) corresponding to 3/2/2021 after completing the implementation of the training program, taking into account the same conditions in the tribal tests.

Statistical methods: The search data was processed through the Statistical Package for the Social Sciences (SPSS).

Presentation and discussion of the results of the tests of the control group:

After collecting the data and processing it statistically, the researcher reached a number of results that he decided to present in the form of tables (7).

Table (7) shows the arithmetic means, standard deviations, and the calculated (t) value for the pre and post-tests of the control group members in the research variables.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Pre-test</th>
<th>Post-test</th>
<th>T value</th>
<th>Sig level</th>
<th>Sig type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>standard deviation</td>
<td>Mean</td>
<td>standard deviation</td>
<td></td>
</tr>
<tr>
<td>Balance</td>
<td>6.50</td>
<td>0.67</td>
<td>5.92</td>
<td>0.51</td>
<td>2.03</td>
</tr>
<tr>
<td>Compatibility</td>
<td>9.92</td>
<td>0.79</td>
<td>12.50</td>
<td>0.52</td>
<td>8.98</td>
</tr>
<tr>
<td>Flexibility</td>
<td>33.08</td>
<td>1.16</td>
<td>37.67</td>
<td>0.65</td>
<td>11.00</td>
</tr>
<tr>
<td>Dig</td>
<td>10.17</td>
<td>0.94</td>
<td>12.58</td>
<td>0.67</td>
<td>7.19</td>
</tr>
<tr>
<td>Bump set</td>
<td>10.42</td>
<td>0.79</td>
<td>12.25</td>
<td>0.87</td>
<td>8.85</td>
</tr>
<tr>
<td>Attack</td>
<td>20.50</td>
<td>1.17</td>
<td>23.67</td>
<td>1.07</td>
<td>7.82</td>
</tr>
</tbody>
</table>

Table (7) shows that the calculated (t) value was greater than the statistical value and below the significance level (0.05), which indicates a significant difference between the two tests and in favor of the post-test in all the variables, investigated.
Table (8) shows the arithmetic means, standard deviations, and the calculated t value for the pre and post-tests of the experimental group members in the research variables.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Pre-test</th>
<th>Post-test</th>
<th>T value</th>
<th>Sig level</th>
<th>Sig type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (standard deviation)</td>
<td>Mean (standard deviation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balance</td>
<td>6.75 (0.75)</td>
<td>4.58 (0.51)</td>
<td>7.29</td>
<td>0.00</td>
<td>Sig</td>
</tr>
<tr>
<td>Compatibility</td>
<td>9.83 (0.83)</td>
<td>15.17 (0.72)</td>
<td>18.76</td>
<td>0.00</td>
<td>Sig</td>
</tr>
<tr>
<td>Flexibility</td>
<td>33.25 (0.97)</td>
<td>43.33 (1.23)</td>
<td>18.57</td>
<td>0.00</td>
<td>Sig</td>
</tr>
<tr>
<td>Dig</td>
<td>10.08 (0.79)</td>
<td>15.75 (0.87)</td>
<td>17.00</td>
<td>0.00</td>
<td>Sig</td>
</tr>
<tr>
<td>Bump set</td>
<td>10.25 (0.75)</td>
<td>16.67 (0.98)</td>
<td>20.51</td>
<td>0.00</td>
<td>Sig</td>
</tr>
<tr>
<td>Attack</td>
<td>20.42 (0.79)</td>
<td>30.00 (3.52)</td>
<td>10.96</td>
<td>0.00</td>
<td>Sig</td>
</tr>
</tbody>
</table>

Table (8) shows that the calculated (t) value was greater than the statistical value and below the significance level (0.05), which indicates that there is a significant difference between the two tests and in favor of the post-test in all the variables investigated.

Table (9) shows the arithmetic means, standard deviations, and the calculated (t) value for the post-test of the experimental and control groups in the research variables.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Control group</th>
<th>Experimental group</th>
<th>T value</th>
<th>Sig level</th>
<th>Sig type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (standard deviation)</td>
<td>Mean (standard deviation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balance</td>
<td>5.92 (0.51)</td>
<td>4.58 (0.51)</td>
<td>6.34</td>
<td>0.00</td>
<td>Sig</td>
</tr>
<tr>
<td>Compatibility</td>
<td>12.50 (0.52)</td>
<td>15.17 (0.72)</td>
<td>10.41</td>
<td>0.00</td>
<td>Sig</td>
</tr>
<tr>
<td>Flexibility</td>
<td>37.67 (0.65)</td>
<td>43.33 (1.23)</td>
<td>14.10</td>
<td>0.00</td>
<td>Sig</td>
</tr>
<tr>
<td>Dig</td>
<td>12.58 (0.67)</td>
<td>15.75 (0.87)</td>
<td>10.03</td>
<td>0.00</td>
<td>Sig</td>
</tr>
<tr>
<td>Bump set</td>
<td>12.25 (0.87)</td>
<td>16.67 (0.98)</td>
<td>11.67</td>
<td>0.00</td>
<td>Sig</td>
</tr>
<tr>
<td>Attack</td>
<td>23.67 (1.07)</td>
<td>30.00 (3.52)</td>
<td>5.97</td>
<td>0.00</td>
<td>Sig</td>
</tr>
</tbody>
</table>

Table (9) shows that the calculated (t) value was greater than the statistical value and below the significance level (0.05), which indicates the existence of a significant difference between the two groups and in favor of the experimental group in all the variables studied.

Discussing the results of the motor abilities and basic skills tests of the two experimental and control groups.

Through the table (9) concerned with the presentation of the post results of the two research groups, control and experimental, there are statistically significant differences in motor abilities and basic skills (Dig, Bump set, Attack) and tactical behavior and in favor of the experimental group that uses special exercises using aids that were given to learners in The experimental group in developing the studied research variables.

The researcher attributes the moral differences in the experimental research sample to the various special exercises using auxiliary means that were entered in the vocabulary of the educational curriculum, especially in the main section of the instructional units, which helped to mobilize the energies inside the learners due to the excitement, challenge, suspense, enthusiasm and impulsion of these exercises. towards the learning process.

As well as the amount of information received by the learner, which increases the quantity and quality of feedback. He states (Yarub Khion 2002) that feedback is the strongest and controlling variable on the learner's performance, and that there was no improvement without feedback, and the instructions and directions that The learner receives among the group members makes the learner an active and effective element in the learning process and not just a receiver of information, unlike the instructions and directions he receives from the trainer only.

It is mentioned (Tawfiq Ahmed, 2003) “As the learner performs the skill with his peers and watches his group perform this skill, this leads to better learning by enhancing performance by watching and correcting errors”.

(Qasim Lazam Sabr) believes that any work will not succeed without excitement and suspense, so when the educational process is devoid of elements of suspense and excitement, its results will be negative. In return, learning will be more positive when it provides and provides fun to the learner that helps in creating a desire to

www.turkjphysiotherrehabil.org

16338
deal with the subject and the required duty. Learning it and forming in it great psychological satisfaction and acceptance, and thus creating rapid learning and acquisition of sports movements and activities”

The researcher stressed that the aids have an important and effective role in learning the skill to be learned because the educational aids help the learners to quickly learn the skills and master them, as the researcher used the aids with different stimuli that helped to use the perceptions of the mental perception of the skills to be learned in addition to knowing the sense of performance, as Displaying a model of images in the form of visual posters, a datasheet, helped to draw the correct movement and stored many motor programs inside the brain, The use of educational aids under the supervision of a specialist under good educational conditions in terms of place, time and tools used Contributed to simplifying the learned material.\(^{(11)}\)

In addition to all of the above, the learners began to perform the movement from its inception during the re-exercise and its repetition without wasting time in introducing extra movements that do not serve the learning process, which led to achieving the goal and raising the level of skill performance and gaining the learning that comes from special exercises prepared, practice and repetition by the learners according to Specific times of performance, and this was confirmed by that “repetition and training give the skill more mastery, competition and more accurate kinetic brilliance \(^{(11)}\).

II. CONCLUSIONS AND RECOMMENDATIONS:

Conclusions:
Through the results reached by the researcher and by using the statistical methods, able to reach the following conclusions:

- The special exercises using means of assistance greatly helped in the development of motor abilities, some basic skills ((Dig, Bump set, Attack).

- The use of aids that serve the skill requirements has a positive effect on the development of motor abilities and performance of the skills under study.

Recommendations:
In light of the conclusions reached by the researcher recommends several recommendations:

- The use of special exercises using means of assistance in preparing the players because it contributes to learning the basic skills in a large and effective way.

- Conducting similar studies on other individual and collective activities, and on different age groups.

REFERENCES:
1 Muhammad Hassan Allawi and Osama Kamel Ratib: (1999); Scientific research in physical education and sports psychology, Cairo: Arab Thought House, p. 232
5 Muhammad Hassan Allawi and Muhammad Nasr al-Din Radwan: (2000); Measurement in Physical Education and Sports Psychology, Cairo, Dar al-Fikr al-Arabi, p. 258
7 Laila El-Sayed Farhat: (2001); Measurement and testing in physical education. 11. Cairo: Book Center for Publishing, p. 169
9 Yarub Khayon: (2002); Kinetic Learning between Principle and Application, Baghdad, Al-Sakhrat Office, p. 91.
11 Qasim Lazam Sabr: (2005); Topics in Movement Learning, Baghdad, College of Physical Education Press, p. 59

www.turkjphysiotherrehabil.org

16339