A REVIEW OF SEVERAL HEPATOPROTECTIVE AND ANTIOXIDANT NATURAL COMPOUND

Niladri M 1, Nagendra Singh 2, D. Kaleeswaran 3, Susheel Yadav 4, Khan Shanawaz 5, Ankita Singh Dhakrey 6

1 Associate Professor, Faculty of Pharmacology, Medical School Akfa University, Tashkent, Uzbekistan.
2 Assistant Professor, Bhagwan Aadinath College of Pharmacy, Maharra, Lalitpur - 284403, Uttar Pradesh, India.
3 Assistant Professor, Department of Information Technology Rathinam Technical Campus Coimbatore, Tamil Nadu, India.
4 Research Scholar, Institute of Pharmacy, Bundelkhand University, Jhansi - 284128, Uttar Pradesh, India.
5 B.S., MBA, Pre Community Service at George Brown College, Toronto, Canada.
6 Research Scholar, Anand College of Pharmacy, Agra - 282007, Uttar Pradesh, India.
m.niladri@akfauniversity.org

ABSTRACT

The liver is around 1.5 kg and is the biggest organ in the body and also important to life. It is positioned in the upper right quadrant below the ribs of the abdomen. The liver is vulnerable to a huge array of pharmaceutical and environmental toxins, as the drug metabolising and detoxifying organ of the body (Hepatotoxicity). A variety of natural pills exhibit promising Hepatoprotective actions, such as paracetamol, CCl₄, alcohol and other forms of acute and chronic liver injury. The protection, efficacy, and price efficiency of natural goods play a significant role in medicinal products. Medicine can be a vital tool to build an efficient treatment to combat numerous liver disorders as well as Medicinal plants. Drug metabolism involves oxidative stress. An antioxidant definition of more physiologically relevant is synthetic or natural compounds added to products to prevent or delay their deterioration in the air by oxygen activity. The therapy of many ailments, especially liver diseases, is a combination of herbal medicines. Development of herbal medicines with efficacy standards, safety can revitalise liver disease cure and antioxidant and hepatoprotective properties. The purpose of this review is to gather data from research on some fruits, plants assessed in various models of hepatotoxicity.

Keywords: Herbal Plants, Hepatoprotective, Antioxidant

I. INTRODUCTION:

The hepatitis is a vital organ of the human body responsible for a variety of processes that contribute to metabolism, immunity, digestion, detoxification and storage of vitamins. Each lobule is hexagonal and a triad portal (such as a door vein, a hepatic artery, and a bile canal) is located at each angle of the hexagon. It originates in endoders and begins around the fourth week of development with the hepatic diverticulum. In almost any organ system in the body, the liver plays a role. It interacts in digestion and metabolism with endocrine and gastrointestinal systems. It plays a role with coagulation factor and protein production in haematology. It plays a crucial function in the metabolism of sex hormones and creates carrier proteins important for reproduction and development. In the body's immunological system, the kupfer cells and Pit cells play a vital function (1).

Drug can be metabolised via oxidation, decrease, hydrolysis, hydration, conjugation, condensation, or insulation; regardless of the procedure, its aim is to simplify the excretion of the medicine. In various tissues, but often more concentrated in the liver are the enzymes involved in metabolism. Metabolism aims to affect the active component (also known as the functional group) of drugs. Metabolism takes place in two periods for many drugs. The reactions of phaseI entail the creation (oxidation, decrease, hydrolyse) of a new or modified functional group or of the
cleavage; these are nonsyntheses. Phase II reactions require the conjugation of an endogenous molecule (for example, glucuronic acid, sulphate and glycine) (2).

During Phase II metabolism drugs or phase I metabolites are combined enzymatically with the help of transferase enzymes with the use of a hydrophilic endogenous compound. UDP-Glucuronosyl Transferases (UGTs), Sulfotransferases (SULTs), N-acetyltransferases (NATs), Glutathione S-transferases (GSTs) and Catechol O-methyltransferases are the most frequent phase II phase-metabolic enzymes (COMTs) (3).

A multitude of risk factors and disorders are causing chronic hepatic conditions (CLD). Excessive alcohol use is the three most common risk factors for CLD; blood-borne viruses, including hepatitis B and C and obesity. The hepatitis is characterised by chronic disease of the liver tissue and its degradation. Early alterations, such as "fatty liver" (fat growth of the liver cell) may lead to irreparable damage through inflammation (hepatitis) and sweat (fibrosis) (cirrhosis). The liver cannot heal itself at this point if additional injury can be prevented (4).

Fig. 1: Factors affecting drug metabolizing enzymes

Hepatotoxicity has three types: cholestatic, hepatocellular and mixed. The virus or cancer impacts liver cells might cause hepatocellular damage. Pharmaceutical medications and medicinal plants are substances that lead to hepatotoxicity. Several pharmaceutical medicines that cause liver damage have been reported by researchers. For instance, acetaminophen overdosage is a frequent cause of medical hepatotoxicity due to its NABQINABQI metabolite, glutathione decreased and hepatic necrotic apoptosis (5).

II. HEPATOPROTECTIVE AND ANTIOXIDANT DRUGS

A number of medicinal plants were evaluated and found to include active standards for the ramification of disease in the curative house. Liver defence plants contain the dispersion of chemicals such as phenols, coumarins, lignans, essential oil, monoterpenes, carotenoids, Flavonoids (6).

Hepatoprotective herbal medications are used to protect against various adverse effects through various ways. Mechanisms include an increase in the antioxidant level/decrease of the oxidizer (ROS); inhibition of cytochrome P450s; increased and decreased levels of the liver enzyme; lower peroxidation and lipid peroxidation (MDA).
Hepatotoxins are the agents responsible for liver harm and numerous chemical compounds can be used to replicate any form of natural liver disease. The behaviour of hepatotoxins defined by CCl₄, thioacetamide, acetaminophen, and ethanol as inherent agents is pretable when a period of continuous development is established between exposure and liver injury (7).

Hepatotoxic agents and its mechanism: The liver toxicity known as hepatotoxins is caused by molecules. For example, the chemical substance and pharmaceutical substances can replicate any sort of herbal hepatotoxicity CCl₄-induced toxicity may result in low-dose Ca²⁺ homeostasis of the dosage and period of exposure and also lipid peroxidation and cytokines and apoptosis production. It is more severe at large dosages or long exposure to CCl₄ and damage over a length of time.

Acetaminophen: An analgesic, antipyretic in large doses it might lead to severe necrotic liver damage. It may employ clinically important experimental model and an example of liver damage generated by the drug.

Therapeutic doses metabolised in particular to glucoronic or sulphate and expelled components and to intermediate reactivies removed by glutathione conjugation. The cyt-P450 at N-acetyl-p-benzoquinone attaching to glutathione at greater dosages is oxidised by excess.

Ethanol: The CYP2E1 isoform cytochrome P450 damage mechanism of ethanol content produces an oxidative stress generating ROS & LPO and leads to a change in the phospholipid composition in the cell membrane. It inhibits GTP, lowers catalase and DSO activity.

D-galactosamine / lipopolysacharide: It is a known liver toxic model and resembles a clinical acute liver toxic and causes liver and fatty liver necrosis with a single dosage. The uracil nucleotide is depleted and the synthesis of RNA and proteins inhibited, ion pump activity losses may occur, the cell membrane permeability may increase, lead to the release of enzymes and the increase of ca²⁺ and cell mortality may occur (7).

Those tissues may have key involvement in the metabolism of xenobiotic agents, however the liver are the principal organ that metabolises the body and also some others in the tissues, intestines, and the skin. The function of each organ depends on how the substance is administered and distributed among the organ. In every organ/tib, even qualitative variances are also varied in the amount of metabolistic enzymes (CYPs and conjugative enzymes). From an experimental point of view, several sub-fractions of tissue and contemporary analytical techniques are commonly utilised. It is advisable to assess kinetic parameters Vmax and Km with organ-dependent preparates for a more full examination of the in vivo role of each organ (8).

Antioxidants are chemicals that are capable of competing with other oxidizable substrates at relatively low concentrations, and therefore of greatly delaying or inhibiting their oxidation. There is a range of enzymes that help protect the cells from oxidants by inhibiting / neutralising the formation of the ROS and detoxifying lipid peroxidation products (Glutathione Transfersases, Glutathione Peroxidases and Ascorbate Peroxidase). Similarly, these anti-oxidizing molecules in cells can act either with free radical neutralisation or by inhibiting their formation.

Specially known as reactive oxygen species (ROS), which occur during the oxygen metabolism process, are oxygen free radicals such as superoxides, hydroxyl radicals (ROS) and peroxyl radicals, supplementing non-radicals such as hydrogen peroxide, hypochloric acid, ozone. ROS is a natural aspect of aerobic life that manifests cellualrtasks such as signal transduction, protection against invasive microbes and gene expression, to promote growth or death. It is a natural element of aerobic life. Liver is a leading ROS organ. Parenchymal cells are initial cells that are vulnerable to liver injury caused by oxidative stress (9).

SODs are the primary enzyme antioxidants Superoxide (Will play a crucial part in the peroxidation of lipids) in oxygen and H₂O₂ is broken by cu, zn, mn and iron and SOD. In both aerobic and extracellular aerobic cells SOD is present.

In the presence of iron and manganese cofactors, hydrogen peroxide is converted into water, hence the process of detoxifying that SOD will begin will be complete.

Selenoproteins- Selenium containing enzymes are used for the breakdown in alcohol of hydrogen peroxides and organic peroxides. It is a trace element that really has value for human health since it is an integral part for structural
and enzymatic functions of the tiny group of selenocysteine-containing selenoproteins (about 25 different proteins). Selenoproteins comprise a number of types of GSH peroxidase (GSHpx), reductase thioredoxin and iodothyronine deiodinase enzymes.

GSHpx it Catalyzes both the removal by GSH of H$_2$O$_2$ and organic peroxides (R-O-OH), GSR it Catalyzes the reduction of GSH to GSH sulphides, a key molecule to resist oxidative stress and preserve the reducing cell environment.

There are numerous antioxidant methods that rely on chemical reactions between antioxidants and free radicals; hydrogen atomic reaction tests are antioxidants.

1. Oxygen radical absorbance capacity (ORAC),
2. ABTS radical scavenging method, Total radical-trapping antioxidant parameter (TRAP),
3. Hydroxyl radical scavenging activity,
4. LPO inhibition capacity (LPIC) assay,
5. Scavenging of H2O2 radicals. Photochemiluminescence (PCL) assay,
6. β-carotene–linoleic acid (linoleate) assay. etc.,

Natural product antioxidant testing was expanded mainly because antioxidants can neutralise the damaging radicals. It suggests that an antioxidant offers a rich diet and a healthy diet (10, 11).

This is why researchers have been proposed to seek for natural and synthetic fields, with inv-tro and in-vivo hepatoprotective models and antioxidant activity.

Fig. 2: Role of antioxidant

Table 1: Hepatoprotective activity of plants (12)

<table>
<thead>
<tr>
<th>Plants</th>
<th>Family</th>
<th>Part used</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casuarina equisetifolia</td>
<td>Casuarinaceae</td>
<td>Leaf and Bark</td>
<td>13</td>
</tr>
<tr>
<td>Cajanus cajan</td>
<td>Papilionaceae</td>
<td>Whole plant</td>
<td>13</td>
</tr>
<tr>
<td>Glycocosmis pentaphylla</td>
<td>Rutaceae</td>
<td>Leaf, Bark</td>
<td>13</td>
</tr>
<tr>
<td>Bixa orellana</td>
<td>Bixaceae</td>
<td>Seed</td>
<td>13</td>
</tr>
<tr>
<td>Physalis minima</td>
<td>Solanaceae</td>
<td>Whole plant</td>
<td>13</td>
</tr>
<tr>
<td>Argemone mexicana</td>
<td>Papaveraceae</td>
<td>Leaf and flower</td>
<td>13</td>
</tr>
<tr>
<td>Caesalpinia bondoc</td>
<td>Caesalpinaceae</td>
<td>Leaf and bark</td>
<td>13</td>
</tr>
<tr>
<td>Carthamus tinctorius</td>
<td>Compositae</td>
<td>Flower</td>
<td>14</td>
</tr>
<tr>
<td>Ardisia solanacea</td>
<td>Myrsinaceae</td>
<td>Leaves</td>
<td>15</td>
</tr>
<tr>
<td>Delonix regia</td>
<td>Caesalpinaceae</td>
<td>Aerial parts</td>
<td>16</td>
</tr>
<tr>
<td>Plants</td>
<td>Family</td>
<td>Part used</td>
<td>References</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>Aphanamixis polystachya</td>
<td>Meliaceae</td>
<td>Leaves</td>
<td>17</td>
</tr>
<tr>
<td>Solanum pubescens</td>
<td>Solanaceae</td>
<td>Whole plant</td>
<td>18</td>
</tr>
<tr>
<td>Coriandrum sativum</td>
<td>Apiaceae</td>
<td>Whole plant</td>
<td>19</td>
</tr>
<tr>
<td>Plumbago zeylanica</td>
<td>Plumbaginaceae</td>
<td>Aerial parts</td>
<td>20</td>
</tr>
<tr>
<td>Cardiospermum helicacabum</td>
<td>Sapindaceae</td>
<td>Stem</td>
<td>21</td>
</tr>
<tr>
<td>Luffa acantugula</td>
<td>Cucurbitaceae</td>
<td>Leaves</td>
<td>22</td>
</tr>
<tr>
<td>Epaltes divaricata</td>
<td>Compositae</td>
<td>Whole plant</td>
<td>23</td>
</tr>
<tr>
<td>Tagets erecta</td>
<td>Asteraceae</td>
<td>Flower branches</td>
<td>24</td>
</tr>
<tr>
<td>Zizphus rotundifolia</td>
<td>Rhamnaceae</td>
<td>Leaves</td>
<td>25</td>
</tr>
<tr>
<td>Milletta aboensis</td>
<td>Fabaceae</td>
<td>Roots</td>
<td>26</td>
</tr>
<tr>
<td>Ficus carica</td>
<td>Moraceae</td>
<td>Leaves</td>
<td>27</td>
</tr>
<tr>
<td>Morus alba</td>
<td>Moraceae</td>
<td>Leaves</td>
<td>28</td>
</tr>
<tr>
<td>Alchornea cordifolia</td>
<td>Euphorbiaceae</td>
<td>Leaves</td>
<td>29</td>
</tr>
<tr>
<td>Leucophyllum frutescens</td>
<td>Scrophulariaceae</td>
<td>Aerial parts</td>
<td>30</td>
</tr>
<tr>
<td>Carissa carandas</td>
<td>Apocynaceae</td>
<td>Roots</td>
<td>31</td>
</tr>
<tr>
<td>Sesamum indicum</td>
<td>Pedaliaceae</td>
<td>Seeds</td>
<td>32</td>
</tr>
<tr>
<td>Flacourtia indica</td>
<td>Flacourtaceae</td>
<td>Leaves</td>
<td>33</td>
</tr>
<tr>
<td>Hippophae rhamnoides</td>
<td>Elaeagnaceae</td>
<td>Leaves</td>
<td>34</td>
</tr>
<tr>
<td>Apium graveolens</td>
<td>Apiaceae</td>
<td>Seeds</td>
<td>35</td>
</tr>
<tr>
<td>Croton oblangifolius</td>
<td>Euphorbiaceae</td>
<td>Whole plant</td>
<td>35</td>
</tr>
<tr>
<td>Hypericum japonicum</td>
<td>Hypericaceae</td>
<td>Whole plant</td>
<td>36</td>
</tr>
<tr>
<td>Cinnamomum zeylanicum</td>
<td>Lauraceae</td>
<td>Bark</td>
<td>37</td>
</tr>
<tr>
<td>Launea intybaecea</td>
<td>Asteraceae</td>
<td>Aerial parts</td>
<td>38</td>
</tr>
<tr>
<td>Mimoso pudica</td>
<td>Mimosaceae</td>
<td>Leaves</td>
<td>39</td>
</tr>
<tr>
<td>Polygala javana</td>
<td>Polygalaceae</td>
<td>Whole plant</td>
<td>40</td>
</tr>
<tr>
<td>Marsilea minuta</td>
<td>Marsileaceae</td>
<td>Whole plant</td>
<td>41</td>
</tr>
<tr>
<td>Ficus bengalensis</td>
<td>Moraceae</td>
<td>Leaves</td>
<td>42</td>
</tr>
<tr>
<td>Chenopodium album</td>
<td>Chenopodiaceae</td>
<td>Aerial parts</td>
<td>43</td>
</tr>
<tr>
<td>Psidium guajava</td>
<td>Myrtaceae</td>
<td>Leaves</td>
<td>44</td>
</tr>
<tr>
<td>Rhododendron arboretum</td>
<td>Ericaceae</td>
<td>Leaves</td>
<td>45</td>
</tr>
<tr>
<td>Diteracanthus patulus</td>
<td>Acanthaceae</td>
<td>Leaves</td>
<td>46</td>
</tr>
<tr>
<td>Cuscuta reflexa</td>
<td>Cuscutaceae</td>
<td>Aerial parts</td>
<td>47</td>
</tr>
<tr>
<td>Crassocephalum crepidioides</td>
<td>Asteraceae</td>
<td>Whole plant</td>
<td>48</td>
</tr>
<tr>
<td>Glycyrrhiza glabra</td>
<td>Fabaceae</td>
<td>Roots</td>
<td>49</td>
</tr>
<tr>
<td>Giandelia tourenfortii</td>
<td>Asteraceae</td>
<td>Footstalks</td>
<td>50</td>
</tr>
<tr>
<td>Coptidis rhizome</td>
<td>Ranunculaceae</td>
<td>Whole plant</td>
<td>51</td>
</tr>
<tr>
<td>Carica papaya</td>
<td>Caricaceae</td>
<td>Seeds</td>
<td>41</td>
</tr>
<tr>
<td>Cichorium intybus</td>
<td>Asteraceae</td>
<td>Leaves</td>
<td>53</td>
</tr>
<tr>
<td>Scoparia dulcis</td>
<td>Scrophulariaceae</td>
<td>Whole plant</td>
<td>54</td>
</tr>
<tr>
<td>Indigofera tinctoria</td>
<td>Leguminosae (Papilionatae)</td>
<td>Whole plant</td>
<td>55</td>
</tr>
<tr>
<td>Solanum trilobactum</td>
<td>Solanaceae</td>
<td>Whole plant</td>
<td>56</td>
</tr>
</tbody>
</table>

Table 2: Antioxidant activities of plants

- **Arnebia benthamii** | Boraginaceae | Whole plant | 57
- **Acalypha ciliata** | Euphorbiaceae | Powder | 58
- **Brassica napus** | Brassicaceae | Marketed product | 59
- **Bruguiera gymnorrhia** and **Heritiera littoralis** | Rhyzophoraceae | Extract | 60
- **Carica papaya** | Caricaceae | Flowers | 61
- **Cheilanthes tenuifolia** | Pteridaceae | Whole plant | 62
- **Citrus macropera Montr.** | Rutaceae | Leaves | 63
- **Cleome heratensis** (C. heratensis) | Cleomaceae f | Aerial part, root, seed | 64
III. DISCUSSION:

A vast number of plant components and formulations were researched for liver protection following the review of this study. In 30 patented and proprietary multиградиент plant products, around 155 phytoconstituents from 90 plants claimed hepatoprotection. India to have more than 20 plants. It is obvious that medicinal plants play an extremely essential function in different diseases and that certain herbs and herbal formulations in different animal models have a stronger hepatoprotective action. Probably due to phenol components, flavonoids and polyphenolic compounds, hepatoprotective agents are present.

Earlier investigations of hepatoprotective and antioxidant medicinal herbs. Table 1 and 2 sum up the plant species, family of plant species, plant components utilised for preparing extracts, formulations, solvents used for extraction, their powers at various doses depend on process. Table 1 and 2 summarise the plant species.

This study review shows the good potentials of hepatic illness for extracts and plant components extracts from some medicinal plants. Details of the mechanism of action of healthy plants against experimentally generated hepatitis are given in the current work.

IV. CONCLUSION:

Antioxidants and hepatoprotective action of plant products which evaluate how these plants treat liver disturbances and oxidative stress prevail over diseases is narrative review of available studies based on literary data. A list of natural products that have a potential antioxidant and hepatoprotective action was offered in this review. Many of those plants had good hepatoprotective antioxidants and activities. Most research has discovered that the radical scavenger method with a regular medication Ascorbic Acid interspersed with inhibitory concentration is good antioxidant property in another plant extract utilising DPPH free. Many of them have effective antioxidant qualities because of their phyto, phenolic and nitrogenic components. Due to their ability to scavenge the free radicals by giving hydrogen, which is responsible for demonstrating the antioxidant characteristics, they have known to be powerful antioxidants. Many of the studies revealed good hepatoprotection against hepatic harmful effects. Inhibition of cytochrome P 450s, lipid peroxidation and increasing glutathione level, it needs to be increased/decreased in oxidants. A list of the pharmaceuticals showing hepatoprotective activities based on several medicines that cause liver damage using a wister albino rat was also shown here. In large part, ccl4 and paracetamol with different dose of poisoning were used. This review decides on the important declines in antioxidant enzymes and hepatoprotective function.

ACKNOWLEDGEMENT: Nil.

CONFLICT OF INTEREST: Author declares no conflict of interest.
REFERENCES:

77. Tandon et al., Comparative assessment of antimicrobial and antioxidant activity between whole plant and parts of Sphaeranthus indicus linn. clinical phytoscience., 2020; 6: 23.

