EFFECT OF SILVER NANOPARTICLE ON PROPERTIES OF MAXILLOFACIAL SILICONE ELASTOMER MATERIAL: AN ORIGINAL RESEARCH.

Dr.BaburajanKandasamy¹, Dr.Fozia Sultana², Dr.Sonali M. Shambharkar³, Dr.Shruti Vishal Dev⁴, Dr.SonalI Perti⁵, Dr. Praveen Kumar Varma⁶, Dr.Heena Dixit Tiwari⁷.
¹Professor and Head, Dept of Prosthodontics, RVS Dental College and hospital, Sulur, Coimbatore baburajankandasamy@gmail.com
²Senior lecturer, Department of periodontics and Implantology, Himachal institute of dental sciences, Paonta sahib, H.P. fozia.freedom@gmail.com (Corresponding Author)
³Senior lecturer Department of Prosthodontics and Crown and Bridge Nanded Rural dental college n research centre, Nanded, Maharashtra drsonaliborkar24@gmail.com
⁴MDS, HOD & Professor, Department of Prosthodontics, Kalinga Institute of Dental Sciences, Campus 15 Rd, KIIT University, Patia, Bhubaneswar, Odisha, INDIA. shrutijpatel72@gmail.com
⁵Professor, Department of Prosthodontics, Kalinga Institute of Dental Sciences, Campus 15 Rd, KIIT-Deemed to be University, Patia, Bhubaneswar, Odisha India, sonaliperti7@gmail.com
⁶Professor, Dept of Orthodontics, Vishnu Dental College, Vishnupur, Bhimavaram, Andhra pradesh dpkvarma@yahoo.com
⁷BDS, PGDHHM, Final year Student, Master of Public Health, Parul University, Limda, Waghodia, Vadodara, Gujarat, India. drheenatiwari@gmail.com

ABSTRACT

Aim: The purpose of this study was to evaluate the impact of silver nanoparticle incorporation into maxillofacial silicone material on its hardness tear strength and color stability.

Methodology: A total of 90 silicone specimens were fabricated. The control samples were fabricated without silver nanoparticles and test samples were fabricated with 20 ppm concentration of silver nanoparticles. Digital shore A hardness tests was used to measure hardness, for tear strength the specimen was placed in the jaws of the universal testing machine and stretched at a rate of 500 mm/min, for color stability Spectrophotometer had been employed. The independent sample’s “t” test was used to test significant differences.

Results: The mean difference for hardness between control and test group was 0.54 and t value was 2.08 and (p < 0.05), tear strength 0.66 and “t” value was 0.93 and (p < 0.05) and for color stability it was -0.02 and t value was -0.92 and (p < 0.05).

Conclusion: The present study findings suggest that addition of silver nanoparticles at 20 ppm concentration decreased the hardness of silicone elastomer, and it did not affect tear strength and color stability.

Keywords nanoparticle, maxillofacial prosthesis, silver, silicone elastomers.

I. INTRODUCTION

Silicone was introduced in 1960; from then, it has become the most widely used and clinically accepted material for the fabrication of facial prosthesis, because of its ease of manipulation, physical and mechanical properties, and biocompatibility. Silicone material possesses a texture similar to that of human skin; its flexibility provides the patient with both well-being and comfort.[1,2] However, the silicone material has some limitations. The main problem with the currently used silicone material is its reduced clinical longevity of the prosthesis. Because of its color instability and material deterioration, for example, it exhibits modified texture, poorly fitting edges.
because of reduced tear strength.[3] Deteriorating changes occurring in silicone material because of environmental condition can be attributed to photo-oxidative attack that is combined action of oxygen and sunlight on the chemical structure of elastomer.[4] Sunlight is composed of many wavelengths such as infrared light, visible light, and ultraviolet (UV) light.[4] The polymer molecules are more sensitive to UV light, and when exposed, the polymer molecule absorbs photons and leads to photodegradation and the breakup of molecules into smaller pieces. It also results in the change of a molecule’s shape, making it irreversible altered.[4] Various methods have been tried to overcome this polymer deterioration such as addition of pigments and opacifiers, nanoparticles, and nano-oxides.[2-4] Due to the advancement in nanotechnology, the use of nanoparticles in elastomers has been tried to enhance its properties.[4] Nano-sized particles differ in their physical, chemical, and biological properties compared to their macro-sized counterparts due to their high surface-area-to-volume ratio. Properties of nanoparticles depend on their size and concentration. Based on their concentration, nanoparticles improve the physical, chemical, mechanical, and biological properties of the material in which they are incorporated.[5] Nanoparticles act as UV shields as the nanoparticles are smaller than the UV light wavelength, and their electrons vibrate when they hit by such radiation, thereby dissipating one portion of the light when absorbing another. Thus, the smaller the nanoparticles, the better the shielding against solar radiation.[6] Nano-sized zinc oxide (ZnO), titanium dioxide (TiO2), and cerium oxide (CeO2) are mainly used as UV shields as they have a high UV absorbing and scattering effect. Nano-sized silicone dioxide (SiO2), TiO2, and ZnO are characterized by their small size, large specific area, active function, and strong interfacial interaction with the organic polymer. Therefore, they can improve the physical properties and optical properties of the organic polymer, as well as provide resistance to environmental stress-caused aging.[7] Several nanoparticles have been tested and studies have confirmed the effectiveness of nanoparticles in improving the color stability by blocking the UV rays and also in improving the color stability, hardness, tear strength, tensile strength, percentage elongation, UV protection, and antifungal properties of silicone elastomer.

AIM OF THE STUDY

The purpose of this study was to evaluate the impact of silver nanoparticle incorporation into maxillofacial silicone material on its hardness tear strength and color stability.

II. METHODOLOGY

In total of 90 silicone specimens were fabricated. Out of which, 45 specimens were made without incorporating silver nanoparticles, which were considered as control group and the other 45 specimens which were incorporated with silver nanoparticles were considered as study group. The samples are divided into three main groups depending on the test and each group is further sub divided into two groups as control and test group for each test. Group 1 –for hardness test, under which it was further divided into Group 1a –15 DS specimens without silver Nano particles and Group 1b –15 DS specimens with silver nanoparticles. Group 2 –for tear strength test, under which it was further divided into Group 2a- 15 TS specimens without silver Nano particles and Group 2b- 15 TS specimens with silver Nano particles. Group 3 –for color stability test, under which it was further divided into Group 3a –15 DS specimens without silver Nano particles and Group 3b –15 DS specimens with silver nanoparticles.

Hardness test- Digital shore A hardness tests was used to measure hardness. Five sites were measured for each specimen with 12 mm distance between of each site and a 6 mm distance from the edge of the specimen.

Tear strength test- The thickness of the specimen (at 3 mm, depending on the degree of mould closure) was measured at the intersection of the trouser leg with a Vernier calliper with digital readout. The specimen was placed in the jaws of the universal testing ma- chine (Lloyd instruments, LR 50 K) and stretched at a rate of 500 mm/min. From these measurements, the tear strength of that specimen was calculated.

Color stability test- Spectrophotometer had been employed. A tungsten lamp of D50 standard illuminate was used with a viewing angle of 2 °UV filter is positioned to 100% UV. For each specimen the color measurements were made on three randomly selected areas and average of three reading is recorded.
III. RESULTS

Effect of adding silver nanoparticles on hardness, tear strength, and color stability of maxillofacial silicone elastomer were evaluated. The mean difference and standard deviation for hardness, tear strength, and color stability of silicone without Nano particles in comparison to silicone with nanoparticles were calculated. The independent sample’s “t” test was used to test significant differences in the physical properties along with the color stability. The group 1a had a mean hardness of 28.307 with a standard deviation of 0.8816. The group 1b had a mean hardness of 27.706 with a standard deviation of 1.1379 (Table 1). The group 2a had a mean tear strength of 14.10 with a standard deviation of 3.013. The group 2b had a mean tear strength of 13.43 with a standard deviation of 2.487 (Table 2). The group 3a had a mean of 0.67 with a standard deviation of 0.10. The group 3b had a mean of 0.69 with a standard deviation of 0.095 (Table 3). The mean difference for tear strength between control and test group was 0.66 and “t” value was 0.93 and p value 0.35. As seen in results p value is more (p < 0.05) and for color stability it was −0.02 and t value was −0.92 and p value 0.36. As seen in results p value is more (p < 0.05). So it can be concluded that statistically there was no significant difference between the control and test group with respect to the tear strength and color stability.

Table 1 - Mean distribution of hardness test (without nanoparticles and with nanoparticles).

<table>
<thead>
<tr>
<th>Groups</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without nanoparticles</td>
<td>26.0</td>
<td>30.2</td>
<td>28.307</td>
<td>0.8816</td>
</tr>
<tr>
<td>(Group 1a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With nanoparticles</td>
<td>25.4</td>
<td>30.6</td>
<td>27.760</td>
<td>1.1379</td>
</tr>
<tr>
<td>(Group 1b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Mean distribution of tear strength (without nanoparticles and with nanoparticles).

<table>
<thead>
<tr>
<th>Groups</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tear strength</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without nanoparticles</td>
<td>9</td>
<td>20</td>
<td>14.10</td>
<td>3.010</td>
</tr>
<tr>
<td>(Group 2a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With nanoparticles</td>
<td>9</td>
<td>19</td>
<td>13.43</td>
<td>2.487</td>
</tr>
<tr>
<td>(Group 2b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3 Mean distribution of color stability (δe*) (without nanoparticles and with nanoparticles).

<table>
<thead>
<tr>
<th>Groups</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>color stability (δe*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without nanoparticles</td>
<td>0.50</td>
<td>0.90</td>
<td>0.67</td>
<td>0.10</td>
</tr>
<tr>
<td>(Group 3a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With nanoparticles</td>
<td>0.52</td>
<td>0.83</td>
<td>0.69</td>
<td>0.095</td>
</tr>
<tr>
<td>(Group 3b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV. DISCUSSION

Nanomaterials have found applications in many areas of medicine including drug delivery, vaccine development, medical imaging, diagnostics, and medical implants. [8-11] Nanotechnology can be defined as the branch of technology using materials and structures with nano scale dimensions, usually in the range of 1–100 nm. [12] The small size, colloidal behavior and propensity to adhere to surfaces [13] suggests that some nanomaterials can be used in coating applications. For instance, nanoforms of silver have been used as antimicrobial coatings in catheters [14] and wound dressings. [15] However, research effort has mainly focused on the antibacterial properties of silver nanoparticles (Ag NPs) [16,17] and limited information is available about their antifungal properties. Nevertheless, recent studies suggest that Ag NPs may be a good antifungal agent. Ag NPs have fungicidal activity against C. albicans at low milligram concentrations (e.g., 0.4–3.3 mg L−1) [18]; perhaps better than their antimicrobial properties for some bacteria. For example, the minimum inhibitory concentration to prevent bacterial growth of Streptococcus mutans, one of the common oral bacteria, is considerably higher (50
mg L⁻¹). [19] Findings of the present study are supported by that of Nobrega et al., wherein, addition of TiO₂ at concentration of 1% and 2% decreased the hardness values, as the TiO₂ particles are smaller in size they had a difficulty in uniform dispersion and tend to agglomerate [20]. They also mentioned that, incorporation of Nano size oxides of Ti, Zn, or Ce at concentrations of 2.0 to 2.5% by weight into a silicone- based elastomer, improves hardness, but when the concentration was 3.0%, the hardness decreased. In other study which revealed that there was a small but significant increase in the hardness as the concentration of the SiO₂ Nano filler in the A- 2186 was increased from 0% to 3% [4]. The tear strength of silicone elastomer is clinically very important as the margins surrounding the facial prosthesis are thin and are usually glued with the medical adhesives, and highly susceptibility to tear [2]. Agglomeration of nanoparticles depends on their surface energy and its chemical reactivity, it is important to maintain the proper concentration of the fillers. Other- wise the Nano sized oxide particles may agglomerate. The ag- glomerated particles acts as an areas of stress concentrations un- der the external forces thereby decreasing the mechanical strength of the material [7]. But, in the present study, there was no statistically significant changes in tear strength, however, the maxi- mum value obtained for tear strength for silicone with nanoparticles was less than that of the silicone elastomer without nanoparticles. In the present study, the addition of 20 ppm AgNP’s did not affect the colorstability, the mean values obtained were 0.69 with a standard deviation of 0.095. This properties of AgNP’s depend on its particle size, shape and the concentration, mostly at different concentration and particle size it can improve the color stability of the elastomer and can be used as opacifier. Since addition of silver nano-particles did not negatively affect the properties it can be used as an antifungal agent in the maxillo- facial silicone elastomer to improve the longevity of the prosthesis.

V. CONCLUSION

Within the limitations of the study addition of silver nanoparticles at 20 ppm concentration, decreased the hardness of silicone elastomer, and it did not affect tear strength and color stability.

REFERENCES