Technique Of Anatomic Single-Bundle ACL Reconstruction with Remnant Augmentation

Alaa Mohammed Mohammed Alswiei, Adel Mohammed Salama, Mohamed Hamed Fahmy Afifi, Hossam Fathi Mahmoud Mohamed
Department of Orthopedic Surgery, Faculty of Medicine, Zagazig University, Egypt.
Corresponding Author: Alaa Mohammed Mohammed Alswiei
Email: Alaswei1@gmail.com

Abstract

Background: Anterior Cruciate Ligament rupture is one of the most frequent orthopaedic sport injuries, with a yearly incidence of 30 to 80 in 100,000 according to 21-year population-based study. Arthroscopically assisted anterior cruciate ligament (ACL) reconstruction is the gold standard for treating ACL ruptures. The different techniques for ACL reconstruction aim to perform as near a normal anatomic reconstruction as possible. Previous studies showed advantages of anatomic single-bundle reconstruction with remnant-preserving technique which include; enhanced revascularization and ligamentization of the graft, preservation of proprioceptive cells, prevention of synovial fluid bath to the tunnels, enhanced bone tendon healing, and early rehabilitation. Furthermore, accurate tunnel placement is easier with this technique than the standard technique. However, the surgery is technically more demanding, and related to increased impingement and cyclops lesion incidence.

Keywords: Anatomic Single-Bundle ACL, Remnant Augmentation

Background

Arthroscopically assisted anterior cruciate ligament (ACL) reconstruction is the gold standard for treating ACL ruptures. The aim of ACL reconstruction is to restore knee stability, recover the patient's pre-injury sports capability, and prevent the occurrence of a meniscal or chondral injury and finally osteoarthritis (1).

The functional ACL bundles consist of two parts that include the anteromedial (AM) and the posterolateral (PL) bundles. The anatomical placement of the reconstructed ACL graft has similar forces as compared to the native ACL. The different techniques for ACL reconstruction aim to perform as near a normal anatomic reconstruction as possible (2).

The afferent neural input of proprioception is a prerequisite of neuromuscular coordination as it influences the biomechanical behavior of the knee and ACL. Therefore, restoration of knee function in ACL injury depends not only on arthroscopic techniques but also on the anatomical and biomechanical factors, and the precise complex interaction between the nervous and musculoskeletal systems (1).

Evaluation of the ACL should be performed immediately after an injury, if possible, but is often limited by swelling and pain. The evaluation should begin by observing the patient's gait, as well as the position of comfort he or she assumes on the examination table. The physician should note any asymmetry, including loss of the peripatellar groove indicating an effusion, hemarthrosis, or both. In a study of 132 athletes with acute knee injury and hemarthrosis, 77 percent had partial or complete tear of ACL. The classic story of a patient cutting, side-stepping or landing from a jump, and the knee giving way, followed by immediate pain and swelling should alert the physician to the most likely diagnosis of ACL rupture. A
"snap" or "pop" was noted by 60% of the patients. Rapid intra-articular swelling following injury is nearly always due to hemarthrosis (3).

The ACL reconstruction techniques have been developed in various ways. These include single-bundle reconstruction, double-bundle reconstruction, selective bundle reconstruction, single-bundle reconstruction with remnant preservation, and double-bundle reconstruction with remnant preservation. The different techniques for ACL reconstruction aim to perform as near a normal anatomic reconstruction as possible. The double-bundle reconstruction technique has become the more popular procedure. However, the double-bundle technique is more technically demanding and more costly and has limited evidence of superior results when compared with the single-bundle reconstruction technique. The centrally placed anatomic single-bundle ACL reconstruction is the common operative procedure and has been proven to restore normal knee function. The ACL remnants are often found during arthroscopic ACL reconstruction of the. The mechanoreceptors that are found in the ACL remnant may contribute to the proprioception of the knee and provide some biomechanical stability of the knee (4).

Fig. (1): Arthroscopic view of the left knee from the anterolateral viewing portal. The ACL remnant was found and pulled with an arthroscopic probe during the arthroscopic ACL reconstruction surgery (4).

Gao et al. (47) showed that the time from injury to surgery was negatively correlated with the number of total mechanoreceptors. They emphasized the role of the ACL stump or ACL remnant that has a role in the preservation of proprioceptive functions of the knee. The ACL remnant is the tissue bridge between the tibia and either the posterior cruciate ligament (PCL) or the intercondylar notch. This remnant tissue maybe developed from the synovial scar, the remnant of the ACL, and the partial rupturing of the anteromedial (AM) or posterolateral ACL bundles. Although the injured knee has the remnant of the ACL, this remnant is often in an abnormal position and could not have the normal biomechanical functions identical to an intact ACL.

The remnant-preserving technique in ACL reconstruction was introduced. This procedure has theoretical advantages that include possible promotion of the revascularization and the synovial coverage of the graft, improvement of knee stability, preservation of the proprioceptive function of the knee, and development of a lower incidence of tunnel widening postoperatively. The ACL reconstruction with remnant augmentation has been developed in various ways. Some of these include (5):

1. **Selective single-bundle reconstruction of the isolated ruptured bundle (AM or PL bundle):** This technique is performed if the intact bundle remains attached at its anatomical origin.

2. **Anatomic center, single-bundle reconstruction with remnant-preserving technique:** This technique is indicated if both ACL bundles are completely torn but retain the ACL remnant in a nonanatomical position.
3. Anatomic double-bundle reconstruction with remnant-preserving technique: this technique might be indicated as in the anatomic center single-bundle reconstruction but has a near normal ACL and may provide more stability of the reconstructed knee.

A prospective, randomized controlled trial (RCTs) study was evaluated in two groups. There were 45 patients with remnant-preserving ACL reconstruction, and these were compared with 45 patients who underwent a standard ACL reconstruction. Proprioception measurements were evaluated using a passive angle reproduction test with the Biodex detector in 80 patients preoperatively and at the last follow-up appointment. There were no differences seen between both groups at the final follow-up (5).

The meta-analysis of the clinical outcomes of single-bundle ACL reconstruction with and without remnant preservation in 6 RCTs, 378 patients (190 remnant-preserving patients, and 188 standard ACL reconstructions) had shown no significant differences in anterior stability, the pivot shift test, knee function scores, and the development of cyclops lesions (6).

The study of the clinical outcomes with an arthroscopic reevaluation following ACL augmentation in 216 patients with a mean age of 25 years (73 patients with single-bundle ACL augmentation, 82 of double-bundle reconstruction, and 61 of single-bundle reconstruction) had shown significantly better synovial coverage of the graft in the augmentation group (good 82%, fair 14%, poor 4%). The side-to-side differences measured with the KT-2000 arthrometer were significantly better in the augmentation group than in the single-bundle reconstruction group. Moreover, in the 62 patients who were with adequate synovial coverage had revealed significant improvement of the knee proprioception in three quarter motion measurements (7).

Therefore, ACL reconstruction with remnant augmentation has shown comparable results with the standard ACL reconstruction. Although ACL reconstruction with remnant augmentation may not has proven to provide the benefits in terms of stability improvement, graft healing, proprioceptive functions, and clinical outcomes, this technique has significantly less tibial tunnel widening postoperatively and no greater incidence of complications. These complications include the occurrence of the cyclops lesions (4).

Surgical technique:
Indications for this surgery are active patients with clinical instability from an ACL-deficient knee. The patients must have normal alignment of the lower extremity, have no advanced knee osteoarthritic changes, and should have good knee range of motion preoperatively (more than 90° arch of motion). Obvious knee stiffness, active infection, or the patients with skeletal immaturity are relative contraindications for this procedure. If the patients have a significant malalignment of the knee, corrective osteotomy is indicated. The patients are evaluated for knee instability, with special attention to the anterior laxity using the anterior drawer, Lachman’s test, and the pivot shift tests. The preoperative knee laxity was not an indicator of either the presence or lack of the presence of the ACL remnant. Associated knee pathologies such as ligamentous tears, meniscus lesions, or cartilage lesions are evaluated preoperatively. Magnetic resonance imaging (MRI) of the affected knee is obtained to evaluate the condition and associated pathologies of the ACL (4).
Fig. (2): Preoperative MRI of the patient with ACL deficiency of the left knee reveals the increased signal intensity in the ACL fibers with the presence of a loose ACL remnant (yellow asterisk, *). The hypersignal of the lateral tibial plateau is represented by a valgus-impacted injury with bone bruise (4).

The patient is positioned supine with the operative knee flexed to approximately 90°. The procedure is done under spinal or general anesthesia depending on the patients’ preference. The affected knee is draped and freely prepped from the proximal thigh to the foot. An arthroscopic examination is performed using standard anterolateral viewing and a standard anteromedial working portal. After cleaning the obstacles of fatty tissue and the ligamentum mucosum in the tibiofemoral compartment, the torn ACL and the ACL remnant are identified. Both menisci are then evaluated, and then the menisci are repaired or resected depending on the conditions found (4).

Fig. (3): Patient positioning and placement of portals; the pictures show the positioning, preparation, and arthroscopic portals for arthroscopic ACL reconstruction of the left knee (AM, anteromedial portal; AL, anterolateral portal) (4).
A quadruple semitendinosus autograft is harvested and prepared from the affected knee. The quadruple autograft length should be more than 6.5 cm, and the graft’s diameter should be at least 7.5 mm. If the semitendinosus autograft is inadequate in size, an additional double or triple autogenous gracilis is also harvested. The EndoButton is used for the graft’s fixation point at the femoral side, and an interference screw is used for tibial fixation of the graft. Keeping in mind that the anatomic position of the tunnel is more important than the obstacle remnant of the ACL tissue, the femoral tunnel is created using a transportal technique from a standard anteromedial portal (4).

![Fig. (4): Arthroscopic view of the left knee from anterolateral viewing portal. After identifying the ACL femoral footprint, the femoral tunnel is created using the transportal technique from a standard anteromedial portal (4).](image)

The medial femoral condyle is carefully protected during the creation of the femoral tunnel to avoid an iatrogenic cartilage injury. The graft should be inserted within the femoral tunnel, and it should be at least 15 mm in length. Next, the tibial footprint of the ACL is identified. In this step, the ACL remnant at the tibial footprint often needs to be partially removed until obtaining the appropriated tibial footprint. The tibial tunnel is then created using a transtibial ACL guide pin that is then inserted from a standard anteromedial working portal. If the position of the guide pin is not positioned through the center of the tibial footprint, an increment reamer is used to adjust the position of the guide pin (8).

![Fig. (5): Arthroscopic view of the left knee from the anterolateral viewing portal. After identifying the ACL tibial footprint, a tibial tunnel is created with the use of a transtibial, ACL guide pin inserted from the anteromedial portal (8).](image)
After creating the femoral and tibial tunnels, the prepared autograft is passed from the anteromedial tibial cavity through the tibia and into the lateral intercondylar notch of the femur. The EndoButton is tested for possible dislodgement of the femoral cortex. Pretensioning of the ACL graft is performed, and the knee’s motion is checked to evaluate of the graft position and the presence of an impingement. The ACL graft is then fixated at the tibia with an appropriately sized interference screw positioned eccentrically under adequate ACL graft tension in a position of nearly full extension of the operative knee. Postoperative radiographs are taken to evaluate the positioning of the implants and the femoral and the tibial tunnel positions (4).

Fig. (6): Arthroscopic view of the left knee from anterolateral viewing portal. The reconstructed ACL graft and positioning and impingement in full knee extension are checked (4).

Fig. (7): Arthroscopic view of the left knee from anterolateral viewing portal. Following fixation of the ACL graft, the graft, and the remnant appears to be a stable ACL reconstruct (4).
Fig. (8): Postoperative radiographs of the left knee in anteroposterior and lateral views reveal the position of the EndoButton and the bony tunnels (4).

Fig. (9): Arthroscopic images of a 26-year-old woman with left knee injury. The ACL remnant is observed arthroscopically. The step-by-step technique of a remnant-preserving ACL reconstruction is shown (4).

**Pearls and pitfalls:**
This technique is simple and processes in the same steps of a standard anatomic single-bundle ACL reconstruction. The difference is only of the preservation of the ACL remnant to get more advantages as have been discussed previously. The pearls and pitfalls of this procedure are shown in table (1) (4).
Table (1): The pearls and pitfalls of the anatomic single-bundle ACL reconstruction with remnant augmentation technique (4).

<table>
<thead>
<tr>
<th>Pearls</th>
<th>Pitfalls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple, needs minimal technical demand as compared with the standard</td>
<td>Clear identification of the center of both, the femoral and tibial footprints using bony ridges as</td>
</tr>
<tr>
<td>anatomic single-bundle ACL reconstruction</td>
<td>reference</td>
</tr>
<tr>
<td>Some studies have reported achievement of greater knee stability and</td>
<td>The appropriate graft position should be of greater concern than remnant preservation without</td>
</tr>
<tr>
<td>better proprioceptive functions</td>
<td>anatomical graft placement</td>
</tr>
<tr>
<td>The RCTs show that the remnant-preserving ACL reconstruction has less</td>
<td>Most of the anterior tibial footprint stump of the ACL remnant should be removed to prevent anterior</td>
</tr>
<tr>
<td>tibial tunnel widening postoperatively</td>
<td>impingement of the graft or tissue (cyclops lesion) during full knee extension</td>
</tr>
<tr>
<td>Strict postoperative care is the key to obtaining good results</td>
<td></td>
</tr>
</tbody>
</table>

References.


