UTILIZING SOCIAL NETWORKS FOR TOURISM ANALYTICS AND RECOMMENDATIONS

Hritwick Singh¹, Vikas Kumar², M. Hema³
1Department of Computer Science and Engineering
SRM Institute of Science and Technology
Chennai, India
hr1005@rmist.edu.in
2Department of Computer Science and Engineering
SRM Institute of Science and Technology
Chennai, India
vj2489@srmist.edu.in
3Assistant Professor, Department of Computer Science and Engineering
SRM Institute of Science and Technology
Chennai, India
hemam@srmist.edu.in

ABSTRACT

The undertaking presents the idea of clients selecting their destination from a set of target locations recommended to them. When the client doesn’t know about the location where he is willing to make a visit, he would select enquiry from the site and add a question to the administrator. The administrator would recommend a set of locations to the client using the Hybrid methodology, and help potential clients discover the objective that best matches their inclinations and prerequisites. When the client is clear about his movement and is comfortable with the recommended destination, he would make the bookings from site. Subsequent to booking the ride there will be an installment alternative where the client needs to pay for the movement. When the client has paid for the visit he can download the ticket as an archive containing the subtleties of the movement. The administrator has the duty of confirming the client subtleties and favoring the client account. He will answer client inquiries and suggest a travel itinerary for the client if the client asks an inquiry to administrator. Likewise the administrator sees every one of the clients buy subtleties and make payments. This undertaking presents the possibility of client choosing their visit goal in type of a bundle and enables client to question administrator about the subtleties of itinerary. Various analysis suggested that our proposed approach outperforms several traditional algorithms for recommendations.

Keywords-Tourist Recommender system, Hybrid methodology, administrator, billing, itinerary

I. INTRODUCTION

Multiple factors play an important role in determining a location which matches the choices of the user. These factors include parameters such as accessibility, availability, popularity and safety. A huge amount of content is present on the internet, but the present algorithms and recommender systems are not efficient enough to predict the locations and priorities of the tourists. Therefore, we need to utilize both transport data along with social networks, and consider the reviews of the local guides, tourists and consequently recommend destinations according to the user preferences.

User’s raw check-in data is utilized by the existing location recommenders to mine their sequential patterns, which raise serious location privacy breaches. After analysing various research papers, we found that various authors have used a single algorithm and methodology in their application, which proves to be less effective in predicting the locations, reason being their slow speeds and minimal coverage of preference aspects of tourists.
A location recommender system is proposed which can preserve the privacy of the users. We first create a front end application using html, css and javascript, perform the button operations using c# language. The application is developed using asp.net framework. Backend development is performed using sql server. Proposed system helps in automation of system by integrating database.

We then employ a Hybrid methodology which combines various approaches suggested in the literature survey performed by us. The methodologies include content based filtering, collaborative filtering, demographic filtering, and knowledge based filtering. We have referred around 20 research papers, and above are the various methodologies suggested in different research papers. We have tried to prepare a hybrid model to inculcate the above suggested approaches

II. LITERATURE SURVEY

Hend Alrasheed, et al. (2020), proposed a recommender system to help vacationers discover the destination that suits their options. Based on the options, the person will be provided with set of locations. Those points are similar to the destinations popular amongst other similar users. The system appoints the selected locations on basis of customer choices scraped from web portals. A future path entails consisting of the ratings of the points of interest and providing accommodations.

Yu Lu, et al. (2019) proposed a model to identify and analyse visitors using delivery data. Model demonstrates how the delivery data can overcome limitations and give bigger insights for associates. Firstly, a graphical approach is proposed to recognize public transport commuters. Utilizing hint information from the identified travelers, a design for vacationer choice analytics version is prepared to learn and expect their next tour. The model can recognize and examine distinct corporations of public commuters. It utilizes the shipping information. Benefits each stakeholders and travelers.

Yonghong Yu, et al. (2019) proposed A recommendation set of rules, which is helpful in recognizing social circles. Here, the authors use algorithms which are based out of networks from on social media. In the experiments shown in paper, it proves that this methodology is better than various existing conventional methods. It utilizes social network systems to decorate the performance of the version. It does no longer make use of transport records for analytics. Instead, it is based more on believe relationship of networks.

Takashi Aoikea, et al. (2019) proposed a model that depicts information of the sightseeing plans of the crowd. It uses CT planner algorithm, which calculates plans, such that it falls within enterprise hours. It is interactive way to make plans for the crowd. It also includes various suggestions from users, and help them create revised plans.

Fatima Leal, et al. (2018) proposed computerized strategies about recommending locations based on reviews provided by data from crowd. The module provides strategies with the intention to mechanically find out untapped locations on behalf of vacationers. The version recommends new places to customers primarily including facts received from tourism platforms, like Expedia. Data Preprocessing tokenises textual evaluations and Topic Modelling finds styles in unstructured texts. Future work includes growth the information set size.

Fatima Leal, et al. (2018) proposed a model which includes incremental model update, offering close to actual-time guidelines. This paper gives two one-of-a-kind Trust & Reputation approaches: (i) standard popularity employing the pairwise believe values the use of all users; and (ii) neighbour-based totally recognition using the pair-smart. Future work entails working upon T and R modelling.

Zhang Lanyuna, et al. (2018) proposed a model for vacationers for effective communique, in order to discuss various facts. The system contributes in know how of how records is aquired inside a traveler group, for creating selections regarding their tours. It includes 4 components: data resources, facts, one of a kind gears, understanding transfer among group contributors thru statistics and choice (totally expertise lively institution participants).

Hao Wang, et al. (2017) proposed LSARS (A Location-Sentiment-Aware Recommender) for customer’s, that may examine personal pasttimes through thinking about each person hobby and the impact of crowd sentiment. It contains options found from neighbourhood. The model analyzes the perspectives of both local population in addition to overseas visitors. It includes consumer evaluations and crowd sentiments. It does now not make use of shipping facts. Relies on conventional records assets.
Laura Martinez Garcia, et al. (2017) proposed a recommender device the usage of a stereotyping version to create visitor lessons so one can in shape up customers with different consumer. The proposed structure, gadget implementation, advice techniques, and algorithms. Significantly will increase the device usability.

Gunjan Kumar, et al. (2017), proposed an technique that leverages the order in addition to the context related to traveler’s style of traveling. It considers the trouble of recommending sequences of activities to a person. It describes its numerical values to assemble interest of customers. Methodologies used in this paper have been Information system, recommender system, decision support systems and Spatial-temporal structures. Further, new techniques have been suggested in the paper. Various new techniques involve recommendation of context (as an example, in which, when, with whom and so forth.) associated with each of the suggested sequence of sports.

Mehdi Ellouze, et al. (2017) proposed a model which could generate guidelines for individual travelers. Various resources are used to provide accommodations to users, and matching their capabilities. Very last concern is considering critique choices to generate guidelines. The framework became especially constructed for studying tourism. In these structures, vital guidelines are provided to travelers.

Jesus Ibanez-Ruiz, et al. (2017) proposed a model which describes the traveler problem, consists in creating a personalized tourist schedule taking into account, other than the same old constraints, together with maximizing the person delight with the visits, other user options associated with the tour fashion. Creates a customized tourist plan as a preference-based planning hassle encoded in PDDL3.0 and solved with the planner OPTIC. The proposal is based upon encoding the tourist time table problem as a CSP (Constraint Satisfaction Problem). First, an outline of the tourist time table problem is given. Then, description of formulation of this trouble for being solved by way of an automated planner. Afterwards, the hassle is encoded as a CSP. Finally analysis of the end result received for a set of tourist problems is completed. It Includes context-aware information together with the place or hours of the visitor points of interest. Maximizes the consumer satisfaction with the visits and Conducts traditional experiments and is based on traditional strategies. Does no longer uses transport statistics for higher accuracy.

Montassar Ben Messaoud, et al. (2017) proposed a model which would help the tourists find comfortable trips for vacations. The model uses an approach which generates visitor plans. Knowledge-based totally structures provide mixed area recommendations. The consequences of various experiments on value sets have proved this approach to be quite effective.

Isabel Cenamor, et al. (2016) proposed a model in which tools makes use of an automatic planning approach to generate visitor plans. A system for the control and making plans of virtual contents and services supplied for bus vacationers. A system is designed for constructing the tourist plans for customers travelling a selected town or place. It integrates the suggested restaurants simply. In addition to the routes among those POIs. It permits smooth modeling and upkeep. It consists of applicable drives (best starvation proper now). It is presently depending on information provided by way of MINUBE.

Kwan Hui Lim, et al. (2016) proposed the PERSTOUR set of rules for recommending personalised tours. Proposed the TOURRECINT set of rules for recommending custom designed excursions. Introduced the GROUPTOURREC hassle and offering an technique to cluster travelers with similar interests into corporations. Developed an method for detecting region-centric groups. Limitation of this approach is that while the individual vacationer blessings, the entire traveler populace may want to doubtlessly “lose”, and bring about bad tourist experience.

Kwan Hui Lim, et al. (2016) proposed the model in which optimization is done using clustering structures. Limitations include where individual tourist plans will not be benifitted. Proposed using k-way and hierarchical clustering to allocate those travelers into tour groups. For POI2Group suggestions, encouraged excursions to those tour companies primarily based on their collective group hobby and the use of a variant of the problem.

Jesus Ibanez, et al. (2016), proposed a web-based totally advice and making plans sports the choices that outline the tour of consumer. It generates a listing of activities which can be probably of interest to the person via the Generalist Recommender System Kernel (GRSK), which uses a blended hybrid advice approach. The information utilized by the GRSK is: (1) tables choices, locations choices and customers alternatives, which shop the characteristics of the POIs to suggest and the consumer choices inferred by using the GRSKK, respectively2; (2) tables history and records information, which save the past interaction of the person with the machine. The
planner makes use of the information in desk timetables, which shops a list of beginning hours for every POI, and movements time, that keeps the envisioned and actual touring time between two places consistent with the fee of travel mode.

Tamer Uçar, et al. (2016) proposed an implementation of an professional system framework that can as it should be classify customers and make predictions approximately consumer associated offerings. Various algorithms have been compared for clustering and classifying patron flight data set. And an structure for an expert device which can be used for producing guidelines or making plans precise campaigns for preferred person businesses was proposed. Product recommendation engine may be used for featuring products or planning precise campaigns for favored person organizations. It relies on conventional records sources. It does not utilize delivery facts.

Quang Thai LE, et al. (2015) proposed the consequences of an on-going research in recommending tour planning to tourists in Japan underneath a realistic attitude. It has leveraged net scraping method to collect a massive quantity of helping information, has built a prototype of a machine that makes use of the grasping set of rules for POIs looking, and tested its practicality. Despite its present day limitations, capacity advantages of such system that is popular to various tourism regions in Japan and customizable to severa customers from extraordinary countries is shown to be high. This paper also opens a dialogue about the necessity of more localization and customization in building recommendation gadget, now not only inside the subject of tourism, however in other disciplines as well.

EdoardoArdizzone, et al. (2012) proposed a model which included Geographic Information Retrieval (GIR), TF-IDF algorithm. Statistics approximately focus on primary touristic points of interests. It uses various textual content, with none other textual content. It also uses various SURF rules and institution comparable pics, as well as various GIR machines are utilized.

<table>
<thead>
<tr>
<th>R.N</th>
<th>AUTHOR NAME</th>
<th>YEAR</th>
<th>TECHNIQUES USED</th>
<th>ADVANTAGES</th>
<th>DISADVANTAGES</th>
<th>FUTURE WORK</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>HendAlrasheed, Arwa Alzeer, Arwa Alhowi mel, Nora shameri, Aisha Althyabi</td>
<td>2020</td>
<td>Tourism recommendation; user preferences and constraints</td>
<td>According to user preferences destination is recommended. Does not utilize transport data for analytics. Social networks does not recommended. Accommodates the decision of selection destination is used to enhance the accuracy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[2]</td>
<td>Yu Lu, Huayu Wu, Xin Liu, and Penghe Chen</td>
<td>2019</td>
<td>Data mining, transportation systems, tourist recommendation</td>
<td>The model analyze different groups of public commuters utilizes transport data. Benefits both stakeholders. Does not utilize social circles and crowd sentiment to full extent. Models may be needed to support real-time analytic tasks.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Authors</td>
<td>Title</td>
<td>Summary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Yonghong Yu; Qiang Wang; Li Zhang; Can Wang; Sifan Wu; Boyu Qi; Xiaotian Wu</td>
<td>Machine learning algorithms, Prediction algorithms, Predictive models, Social networking (online), Recommender systems</td>
<td>It utilizes social network platforms to enhance the performance of the model. It outperforms the traditional models. It does not utilize transport data for analytics. Instead, it relies more on trust relationships of networks. Present the process of learning users represe ntations.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Takashi Aoikea, Bach Hoa, Tatsuno Haraa, Jun Otaa and Yohei Kuratab</td>
<td>Travelling salesman problem, recommender system; service design; crowding data</td>
<td>It provides alternative plans in 70% of cases when spot is crowded. Does not obtain data from online travel management websites. Experiment is conducted when the congestion is visualized and user can freely adjust it.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>Zhang Lanyun</td>
<td>Search engines, Tourism websites, Maps, Social media</td>
<td>Allure tourist popularity, ranking, scores and reviews from other users. Keep these factors open to recruit as many participants with recent travelling experience as possible.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>Fatima Leal, Horacio Gonzalez–Velez, Benedita Malheiro, and Juan Carlos Burguill</td>
<td>Implemented in Java, Openstack cloud</td>
<td>Use tourism crowdsourced textual information. Uses textual reviews from Expedia. Unable to manage drives such as hunger of tourists. Does not form social circles. Design trust and reputation model by increasing the data set dimension.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>Authors</td>
<td>Year</td>
<td>Method/Model</td>
<td>Recommendation</td>
<td>Trust & Reputation Modeling</td>
<td>Future Work</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>7</td>
<td>Fátima Leal, Benedita Malheiro, and Juan Carlos Burguillo</td>
<td>2018</td>
<td>User profiling using the multi-criteria ratings; k-Nearest Neighbours (k-NN); Trust & Reputation modelling</td>
<td>Based on neighbors' trustworthiness between users is computed taking into account.</td>
<td>Relies on trust relationships instead of practical data such as transport data.</td>
<td>Introduces hotel recommendations.</td>
</tr>
<tr>
<td>8</td>
<td>Hao Wang, Yanmei Fu, Qinyong Wang, Hongzhi Yin, Changyi Du, Hui Xiong</td>
<td>2017</td>
<td>Geographic information systems; Data mining</td>
<td>Analyzes the perspectives of both local inhabitants as well as foreign visitors. It includes user reviews and crowd sentiments.</td>
<td>Does not utilize transport data. Relies on traditional data sources.</td>
<td>Distributed space into different regions by applying multinomial distribution.</td>
</tr>
<tr>
<td>9</td>
<td>Jesus Ibanez-Ruiz, Laura Sebastia and Eva Onaindia</td>
<td>2017</td>
<td>Machine learning algorithms, Prediction algorithms, Predictive models</td>
<td>Fosters travel style and model of transport of travelers. Maximizes the user satisfaction with the visits.</td>
<td>Conducts traditional experiments and relies on conventional methods.</td>
<td>Explains quality metrics and performs extensive experiments to evaluate the results obtained with both solvers.</td>
</tr>
<tr>
<td>Year</td>
<td>Authors</td>
<td>Algorithm(s) Used</td>
<td>Approach to Improve and Maintain High Accuracy of Recommendations</td>
<td>Usability of the System</td>
<td>Planning of the Whole Holiday to Make the Framework Smart</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-------------------</td>
<td>---</td>
<td>-------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>Montassar Ben Messaoud, Ilyes Jhani, Eya Garci, and Toon De Pessemier</td>
<td>Expectation-Maximization (EM) algorithm, DBSCAN algorithm, K-means algorithm</td>
<td>Suggest a number of different activities for a composite trip.</td>
<td>Does not handle issues of managing activities at each destination.</td>
<td>Inspect collaborative method in which candidate timeline is drawn from the activities of other users in the system.</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>Laura Martinez Garcia, Jhonatan Montes Serna, and Valentina Codutti</td>
<td>K-means, K-Nearest Neighbour algorithm and google maps.</td>
<td>User can generate the interest list where he/she wants to travel.</td>
<td>Does not manage drives such as hunger of tourists.</td>
<td>Unable to optimize transport data.</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>Gunjan Kumar, Houssein Jerbi, and Michael P.O'Mahon</td>
<td>Information systems, Decision support systems; Spatial-temporal systems</td>
<td>It shows promised performance and outputs.</td>
<td>Does not utilize crowdsourcing.</td>
<td>Planning of the whole holiday makes the framework smart.</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>Mehdi Ellouze, Slim TURKI, Younes Djahghoul, Muriel Foullonneau</td>
<td>Natural Language Processing, Data Analysis modules, recommendation module</td>
<td>The best matched hotel is presented a framework with a real prototype.</td>
<td>Does not include drives such as hunger management.</td>
<td>Scout multi-criteria recommendations using both textual and visual information.</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>Fa’tima Leal, Benedita Malheiro, Horacio Gonzalez</td>
<td>Online rating prediction trust modeling; It increases the hotel rating prediction accuracy.</td>
<td>Does not include drives such as hunger.</td>
<td>Does not optimize.</td>
<td>Scout multi-criteria recommendations using both textual and visual information.</td>
<td></td>
</tr>
</tbody>
</table>
Ve´lez, Juan Carlos Burguillo y .

[15] Isabel Cenamo r, Tomás de la Rosa, Sergio Núñez, Daniel Borrajo 2016 Google Maps, Weighted Best-First search Maintenance is easy. Explore relevant drives. Current dependency on information provided by MINUBE Future work is to generate usermodels and Touristplans.

[16] Kwan Hui Lim 2016 Utilizes geo-tagged photos and crowdsourced information; Prevent crowd and queuing time at tourist places. While approaching only individual tourist take benefit. Future work is to enhance the profits of the users.

[17] Jesus Ibanez Laura Sebastia and Eva Onaindia 2016 context-aware tool preference temporal planning Inclusion of restaurants and bars and leisure attractions such as Cinemas or theaters. It does not utilize transport data for analytics Does not use social networks for recommendations Estimate the distribution by studying the actual behavior of tourists by means of an analysis of Twitter interactions Future work is to utilize the transport data and does not too much relies on traditional data sources.

[18] Tamer Uçar, Adem K arahoca 2016 Xmeans clustering, Radial basis function networks, Bayesian network, ANFIS method will be a suitable approach for implementing an expert system which can be used for classifying and proposing flight destinations Relies on traditional data sources It does not utilize transport data Future work is to utilize the transport data and does not too much relies on traditional data sources.
[19] Kwan Hui Lim 2016 The KMEAN, and RAND algorithms. Recommend Tour Itinerar y to Tour Groups, Assign Tour Guides to Lead Tour Groups. DO not consider group recomme ndations for tourism. Future work is to Intende d transpor t modes and also conside r uncertai nty in POI visit duration.

[20] Tamer Uçar, Adem K arahoca 2015 Hybrid Filtering Utilizes data from flights and hotels. Enhance overall perfor mance of he system. Does not use social networking website data. Does not forms social circles. The proposed recomm ender system can also be convert ed to a smart campai gn planer. After obtainin g user needs and analyzi ng inventor y items.

[21] Quang Thai LE 2015 Heuristics Based Clustering and POIs Searching, Collecting Data Using Web Scraping Technique To reduce the physica l effort of the tourists and recomend them a persona lized tour is the main objecti ve of this paper. There are just a few pieces of research which emphasiz e detail technical concerns regarding the performa nce of the implemen tation platform. A much more compre hensive approac h focuses on JR train system as the main transpir ation system.

[22] Edoardo Ardi zzone 2012 Geographic Information Retrieval (GIR), TF-IDF algorithm To get more information about the most preferr Do not consider large number of images for georefere Future work is Information getting from users.
Table 1. Literature Survey

III. PROPOSED ARCHITECTURE

Modules

User:
User Authentication, User Registration, User Select Travel Agencies, Enter Query To Admin, Travel Agencies Details, Booking, User Payment, Download Ticket

Admin:
Admin Authentication, Give Permission To Every User, View Booking Details, Response To Every Query

Module Description:

Fig. 3.1. Registration
Fig. 3.2. Login
Fig. 3.3. Users select travel agencies

User → Select Travel Agencies → View detail about the tour and travel → Database

Fig. 3.5. Users select Travel Agencies and view details

User → User basics details → Enter the person details → Database

Fig. 3.6. Bookings

User → Queries → Database → Admin receive the query → Travel Agencies → Add and View review
Fig. 3.7. Users making payment

Fig. 3.8. Users can download the Itinerary and tickets

Fig. 3.4. Users send feedbacks to admins

Admin:

Fig. 3.9. Authentication of admin into system

Fig. 3.10. Admin Granting Permission to Every User
Fig. 3.11. Admin can view Booking Details

Fig. 3.12. Admin giving response to every feedback and query

1
Fig. 3.13. Architecture Diagram

Data Flow Diagram

Level 1:

Level 2:

Level 3:
Advantages:

Our paper proposes content based filtering and collaborative filtering, so that users can get personalised recommendations. We utilize data from websites, using web scraping. The existing systems have certain privacy concerns, where they consume the check-in data of users, keeping various sensitive information at stake. This includes disclosure of confidential information, like political views and personal preferences. The proposed system outperforms various traditional methods, and does not breach privacy of users.
IV. GRAPHICAL ANALYSIS

Fig. 4.1. Pareto Chart depicting content-based filtering

Fig. 4.2. Bar Graph depicting the frequency of itemId, count and ratings of destinations

The above charts provides the details required to recommend locations from content-based filtering

Fig. 4.3. Graph for itemId vs ratings given by users
Fig. 4.4. Line plot for userId vs ratings provided by users.

Fig. 4.5. Line plot for itemId vs count of each destination.

The above charts provide the distribution of userIds, itemId, and count of visitors at each destination. It gives details about the density of ratings of every point of interest.

Fig. 4.6. Bar graph depicting the distances of each destination from city centre.

Fig. 4.7. Bar graph for itemId and count of number of visitors.
Fig. 4.8. Bar graph for destination vs rating of each destination

Fig. 4.13. Kernel Density Estimation jointplot for ratings of each destination

Fig. 4.9. Distplot for ratings of each destination spot

Fig. 4.10. Distplot for count of visitors
Fig. 4.11. Jointplot for ratings of each destination

Fig. 4.12. Hexagon jointplot for ratings of each destination

Fig. 4.14. Pairplot for itemId, count of visitors and rating of each destination
V. NUMERICAL ANALYSIS

Fig. 5.1. Data set for Content-based filtering
V. RESULTS AND OUTPUT

![Table 5.2: Data set for Collaborative Filtering](image)

Fig. 5.2. Data set for Collaborative Filtering

![Table 6.1: Registration Details](image)

Fig. 6.1. Registration Details

![Table 6.2: User recommendation review](image)

Fig. 6.2. User recommendation review
Fig. 6.3. User Booking

Fig. 6.4. User Payment

Fig. 6.5. User Review

Fig. 6.6. Home Page
Fig. 6.7. User Registration

Fig. 6.8. User Login

Fig. 6.9. Admin Login

Fig. 6.10. Admin Permission
Fig. 6.11. Travel Agencies

Fig. 6.13. Add Feedbacks

Fig. 6.14. Admin viewing feedbacks

Fig. 6.12. Admin Replying to feedbacks and suggestions
Fig. 6.15. Users can view details of tour

Fig. 6.16. Admin recommendations for tourists

Fig 6.17. Users can view ratings of the destination
VI. CONCLUSION

Majority of the location recommenders utilize the raw check in data of users, from their places of visits, like hotels, restaurants, marketplaces and amusement places. But in this paper, we have proposed a recommendation system which helps to provide ratings of places to users, thus aids them in identifying their location of interests. We use hybridised algorithmic approach, which combines the best methodologies which we analysed from our literature survey. The proposed system is highly secured and authenticated, and prevents any kind of mismanagement for potential tourists. The system is user friendly and provides the facility to download and upload documents into database. The system is thus easy to access, enables proper communication between users and admin, and ensure that no mismatch happens.

REFERENCES

3. Yonghong Yu; Qiang Wang; Li Zhang; Can Wang; Sifan Wu; Boyu Qi; Xiaotian Wu, “Integrating Social Circles and Network Representation Learning for Item Recommendation”, 2019
4. Takashi Aoki, Bach Hoa, Tatsunori Haru, Jun Ota and Yohei Kurata, “Utilising Crowd Information of Tourist Spots in an Interactive Tour Recommender System”, January 2019
5. Zhang Lanyuna, Sun Xub, Christian Wagnerc, “Exploring the group holiday decision-making process with the support of technology”, April 2018
6. Fatima Leal, Horacio Gonzalez-Velez, Benedita Malheiro, and Juan Carlos Burguillo, “Semantic Profiling and Destination Recommendation based on Crowd-sourced Tourist Reviews”, June 2018
7. Fatima Leal, Benedita Malheiro, and Juan Carlos Burguillo, “Trust and Reputation Modelling for Tourism Recommendations Supported by Crowdsourcing”, March 2018
9. Jesus Ibanez-Ruiz, Laura Sebastia and Eva Onaindia, ‘Evaluating the quality of tourist agendas customized to different travel styles’, 2017
11. Laura Martinez Garcia, Jhonatan Serna, Valentina Codutti, “10 SIGNALS: A Personalized City Tours Prototype”, August 2017
14. Fatima Leal, Benedita Malheiro, Horacio Gonzalez-Velez, Juan Carlos Burguillo, “Trust-based Modelling of Multi-criteria Crowdsourced Data”, August 2017
15. Isabel Cenamor, Tomás de la Rosa, Sergio Núñez, Daniel Borrajo, “Planning for tourism routes using social networks”, 2016
17. Jesus Ibanez, Laura Sebastia and Eva Onaindia, “Planning tourist agendas for different travel styles”, 2016