STUDY THE HISTOLOGICAL STRUCTURES OF SKIN AFFECTED WITH N-ACETYLCYSTEINE IN THE RABBITS

Hiba M. Abd Alrahma¹, Ashraff Waleed Abdulraza², Dhuha Adel Kareem³
¹Department of anatomy and histology, College of Veterinary, University of Basrah, Iraq.
²Department of Surgery and Medicine Obstetric, College of Veterinary University of Basrah, Iraq.

ABSTRACT

The project of this research was study the histological structures of rabbits skin that effected with N-acetyl- cysteine. Ten rabbitsin both sex was used in this study and divided into two groups, the control group and treated group with0.3%N-acetyl- cysteine ointment (NAC). Histological finding show the skin of rabbit was formed from dermis layer that separated into many layers of cells (stratum corneum, stratum granulosum, stratum spinosum and stratum basal. the second layerwas dermis which contain papillary layer with the papillary projection and reticular layer that fill a largest field of the dermis. The epithilization, keratinization, granulation tissue and angiogenesis was more in the treated group than control group, while the fibrosis was more in the control group in compared with other group.

Keywords: Histology, N-acetyl- cysteine and rabbit skin.

I. INTRODUCTION

The skin consists of an epidermis and dermis joined to underlying structures such as muscle and bone by the subcutis (1).

Wound healing involves a complex series of interactions between different cell types, cytokine mediators, and the extracellular matrix (ECM). In general, there are three or four major stages of wound healing: inflammation, proliferation, matrix deposition and remodeling (2,3)

N-acetylcysteine (NAC) is a drug that supplies bioavailable cysteine for glutathione replenishment and prevents oxidative damage as well as inflammation. It also leads to glutathione (GSH) formation in the body. Besides fostering angiogenesis, it is used to scavenge free radicals. NAC has a number of functions in the stages of repair process, including cell proliferation, migration, and scratch wound healing. Moreover, NAC has also been reported to promote wound healing in diabetic rats (4)

During the process of wound healing, various inflammatory cells such as neutrophils, macrophages, endothelial cells and fibroblasts produce reactive oxygen species (ROS) (5)

N-acetyl-cysteine is soluble in water and alcohol, and practically insoluble in chloroform and ether (6)

The oral administration of this drug, reaction of deacetylation ofNAC happens, while passage it through the small intestine as well as liver, thus its 4-10% decreased in bioavailability by NAC which stimulates biosynthesis of glutathione, directly acts as a free radicals scavenger and also promotes detoxification. It acts as powerful antioxidant and a potential treatment option to the diseases (in the diseases when the generation of free radicals) (7)

So this study was aimed to evaluated the effect of N-acetylcysteine on the histologystructures of the skin in the rabbits.

II. MATERIALS AND METHODS

the samples of this study was obtained from the skin of ten rabbits of both sex, the weight was (2.5-3 kg) and divided into two groups each group was contain five animals(control group and treated group). The animals were
given a mixture of ketamine HCl 50 mg/kg B.W (Alfasan Company) and xylazine Hcl 10 mg/kg B.W (Alfasan Company) as anesthetic agents by intra muscular injection the skin was prepared under aseptic technique, the incision was done on the back of the animals to avoid the pollution in the environment of animals and it is difficult for the animal to reach it. The hair of area was a sheaved and made incision 2-Cm in the depth of skin, the skin closed by suturing technique. Control group was remained untreated other group was treated with NAC cream 0.3%. The collected sample of skin was put into 10% neutral formalin, processed via a serial steps of histologic technique, and then embedded in paraffin. The blocks were used to obtain 5-μm serial sections, and the histological appearance of the tissues was estimated by staining the sections with hematoxylin-eosin stain (8). The slides were examined using a light microscope. And photographed with digital camera.

Result

The histological structures of the skin was consisted of epidermis, the epithelium of dermis was keratinized stratified squamous epithelium, the dermis contains many cells, single layer of low columnar cells (stratum basale), a few rows of polygonal cells above the stratum basale was (stratum spongiosum and stratum graulosum and which blend above more elongated non corn field cells of stratum corneum Fig 1. The dermal epithelium appeared more epithelization and keratinization with group that treated with NAC in compare with control group Fig 2. The histological structure of other layer of skin was the epidermis and consisted of superficial papillary layer composed of a fine fibro dense irregular connective tissue with papillary projection into the basal epidermis, the underlying tissue is the reticular layer that comprises the bulk of the dermis and consisted of heavy dense irregular connective tissue Fig 3. The inflammation and fibrosis was more remarkable in this layers of control group in compared with NAC treated group Fig 4.

Other accessory structures of the skin were hair follicle (primary hair follicle and secondary hair follicle), sebaceous gland, serous gland and erector muscle Fig 5.

The granulation tissue and angiogenesis (newly blood vessels formation) were more distributed in treated group with NAC than control group Fig 6.

Figure 1: Histological structure of skin in brabbit: A- Epidermis B- Dermis C- Hair follicle, E- Sebaceous gland. H&E stain, 10X
Figure 2: Histological structure of epidermis of skin in rabbit: A- Stratum corneum
B- Stratum granulosum. C- Stratum spinosum D- Stratum basale. H&E stain, 100X

Figure 3: Histological section of the skin in rabbit show more epithelization and keratinization in NAC treated group* (B) 40X than control group (A)*10X, H&E stain.

Figure 4: Histological section in the skin of rabbit show the distribution of fibrosis in control group than NAC treated group. H&E stain, 20X.
The healthy and normal skin was important in the process of body hemostasis activity and improved the healing of the wound and it is the first defense line against the organisms \((9, 10)\). Histologically, the skin in the rabbit showed two main layers, the epidermis and dermis. The epidermis was consisted of keratinized stratified squamous epithelium with four layers of cells: stratum basale, stratum spinosum, stratum granulosum and stratum corneum, this finding similar to the \((11, 12, 13, 14)\) in sheep, the White New Zealand and Angora rabbits and wild rabbits respectively, the stratum lucida was absent in this study and agreement with \((14)\) but variance with \((15)\). The dermis composed of papillary layer that located under the basal membrane of epidermis and reticular layer that blend together without a clear line between them this resemble to the finding in \((16)\) the other structures in the dermis was hair follicles was compoundin and this disagreement with \((17)\) that recorded the hair follicles was simple in type in domestic animals, sebaceous glands, sweat glands and the blood vessels with erector pillimuscles that present in all skin of animals. Angiogenesis was

The histological structure of the skin of animals that treated NAC showed more epithelialization and keratinization in the epidermis in compared to the control group due to NAC have active effect on the proliferation of fibroblast and fibroplasia thus enhanced the wound healing and this similar to the \((16)\).
The fibrosis was appeared less in treated group with NAC than control group which widely distributed this similar to the (18) and variance in (19). Angiogenesis and granulation tissue were showed in the NAC treated group than the control group and this similar to the (18) and (19) due to the effect of NAC may be related to its antioxidant properties. (20)

IV. CONCLUSION

This study showed the normal structures of treated skin in the rabbits, that consisted of two layers epidermis and dermis. The N-acetylcysteine affected on histological picture of the skin. Epithelization, keratinization, granulation and angiogenesis was more in NAC treated group in compare with control group in which the fibrosis appeared dermis. The N-acetylcysteine affected on histological picture of the skin.

REFERENCES

6. N-Acetyl-L-cysteine | C5H9NO3S - PubChem

